3RD SEM./MECHANICAL/AERO./AIRCRAFT MAINT./ AUTO./DIP IN MECH./MECH(MAINT.)/MECH(PROD./ MECH(SAND.) /MECH(IND INT.)/ 2024(W)

TH4 Thermal Engineering-I

Full Marks: 80 Time- 3 Hrs Answer any five Questions including Q No.1& 2 Figures in the right hand margin indicates marks 1. Answer All questions 2 x 10 Differentiate between closed system and open system. a. Classify and explain the IC engines according to the type of fuel used. b. c. Define Free expansion. Draw the P-V and T-S diagram for Carnot cycle. 121162406 Define Cetane number. e. Illustrate Zeroth law of thermodynamics. Define heat engine. Write and explain the statement of Boyle's Law. What are the limitations of 1st law of thermodynamics? Differentiate between Path function and Point function. į. 2. Answer Any Six Questions 5 x 6 What is Quasi-static process? Explain with diagram. a. b. Derive the relationship between C_{p.} C_v and R. A cyclic heat engine operates between a source temperature of 827°C and a 2.5 x 2 c. sink temperature of 37°C. Calculate i) the thermal efficiency of the cycle ii) the amount of heat supply if the net work output is 5 J. d. Derive the expression for the work done of an isothermal process. A quantity of gas has a volume of 0.2 m³, pressure of 2 bar and a temperature 2.5 x 2 of 100°C. If the gas is compressed at a constant pressure to a volume 0.15 m³ then calculate i) Work done in KJ The temperature at the end of compression ii) Differentiate between 2-stroke engine and 4-stroke engine. An engine working on the Otto cycle has a cylinder diameter of 150mm and a g stroke length of 250 mm. Calculate the air standard efficiency if the clearance volume is $1.5 \times 10^{-3} \,\text{m}^3$ and v = 1.4

Answer Any Three Questions

3. Illustrate the working of 4-stroke diesel engine with diagram. 10 4. Derive the steady flow energy equation. Write its application to turbine. 7+3=10A certain quantity of air has a volume of 0.03 m^3 at a pressure of 1.3 bar and 3+3+45. temperature of 25°C. It is compressed to a volume 0.004 m³ according to the law $pv^{1.3}$ = constant. Calculate i) The final temperature The final pressure ii) iii) Work done during compression 6. Illustrate diesel cycle with P-V and T-S diagram and derive its ideal efficiency. 10 i heat armance sification 7. $2.5 \times 4 = 10$ Write short notes on-

1915201-20250121162406