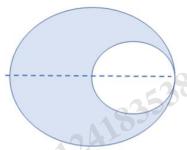
1ST SEM./ COMMON TO ALL ./ 2023(W) NEW

Engineering Mechanics TH-4

Time- 3 Hrs Full Marks: 80


Answer any five Questions including Q No.1& 2 Figures in the right hand margin indicates marks

1. Answer **All** questions 2 x 10

- What do you mean by coplanar forces? a.
- Define "Friction" and co-efficient of the friction. b.
- State the Perpendicular Axis Theorem.
- What is the condition of reversibility of a lifting machine? d.
- State the Newton's 1st law of motion.
- f. Differentiate between couple and moment of a force.
- State and explain the Polygon law of forces. g.
- Differentiate between simple gear train and compound gear train. h. 101241835
- Define co-efficient of Restitution.
- What do you mean by Centroid?
- Answer **Any Six** Questions

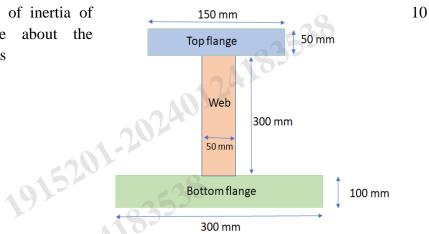
6 x 5

- State and prove the Lami's Theorem.
- What are the laws of friction? Explain in details. b.
- In a simple axle and wheel arrangement, radii of effort wheel and axle is 240 mm and 40mm respectively. Find the efficiency of the machine, if a load of 600N can be lifted by an effort of 120N.
- A circular hole of 50mm diameter is cut out from a circular plate of 100mm diameter as shown in figure. Find the centroid of the section.

- The resultant of two concurrent forces is perpendicular to the smaller force and angle between the forces is 120°. If the bigger force is 60N, find the smaller 5201-2024 one.
 - A bullet of 10gm mass is fired horizontally with a velocity of 1000m/s from a gun of mass 50kg. Find (a) velocity with which the gun will recoil and (b) force necessary to bring the gun to rest in 250mm.
 - Define simple lifting machine. Explain and establish the relation between g efficiency, mechanical advantage and velocity ratio of a simple machine

Answer Any Three Questions

- 3 For a weight lifting machine, an effort of 40N can lift a load of 1kN and an effort of 55N can lift a load of 1.5 kN. Find the law of the machine. Also find maximum mechanical advantage and maximum efficiency of the machine. Take velocity ratio of the machine as 48.
- The following forces act at a point 4


10

- i) 20N inclined at 30° towards north of east
- ii) 25N towards north
- iii) 30N towards north-west
- iv) 35N inclined at 40° towards south of west

Find the magnitude and direction of the resultant force.

- A body of weight 450 N is pulled up an inclined plane by a force of 300N. The 5 inclination of the plane is 30° to the horizontal and the force is applied parallel to the plane. Determine the co-efficient of friction.
- Find the moment of inertia of 6 the given figure about the Centroidal YY axis

5201-20240124

- 7 The value of greatest resultant and least resultant of two forces are 17N and 3N respectively. Determine the resultant force if the angle between the forces is 120^{0} .
- ath 6 8 Prove that the moment of inertia of a rectangular section having width 'b' and 10 depth 'd' about x-x axis is $bd^3/12$.