1st SEMESTER/COMMON/2021(W)(NEW) Th3 ENGINEERING MATHEMATICS - I

Full Marks: 80 Time- 3 Hrs

Answer any five Questions including Q No.1& 2 Figures in the right hand margin indicates marks

1. Answer all questions

2 x 10

- a. Find M_{23} and C_{32} of the determinant $\begin{bmatrix} 4 & 3 & 8 \\ 6 & 7 & 5 \\ 9 & 0 & 6 \end{bmatrix}$.
- b. Find k for which the following lines are perpendicular to each other 2x+3y-1=0 and kx-4y+2=0.
- c. Find $\sin(\tan^{-1} x + \cot^{-1} x)$.
- d. Find the centre and radius of the sphere $(x-2)(x+2) + y^2 + (z-3)(z+3) = 0$
- e. If $[3 \ 4 \ 2] \times B = [2 \ 1 \ 0 \ 3 \ 6]$. Find order of B
- f. What is ASTC Rule in Trigonometry?
- g. If the equation $3x^2 \frac{k}{2}y^2 6x + 9y 3 = 0$ represents a circle, find k.
- h. A line makes angle α , β , γ with X,Y,Z axes, then find $sin^2\alpha + sin^2\beta + sin^2\gamma$.
- i. Find the multiplicative inverse of the matrix $\begin{pmatrix} 4 & 3 \\ 5 & 4 \end{pmatrix}$.
- j. Find the intercepts cut off by the plane 2x+3y-z=6 on the axes.

2. Answer **Any Six** Questions

5X6

- a. Find the angle between two lines whose direction ratios $are\langle 1,2,1 \rangle$ and $\langle 2,-3,4 \rangle$.
- b. Find the equation of the circle whose diameter is the portion of the line 3x+4y-12=0 intercepted between the coordinate axes.
- c. Prove without expanding

rove without expanding
$$\begin{vmatrix} a & a^2 & a^3 \\ b & b^2 & b^3 \\ c & c^2 & c^3 \end{vmatrix} = abc(a-b)(b-c)(c-a).$$

- d. Find the maximum and minimum value of the following $6 \cos x 8 \sin x 3$
- e. Find the equation of the line which passes through (-3, 7) and makes intercepts on the axes equal in magnitude but opposite in sign.

- f. In a triangle ABC if $m \angle A = 90^{\circ}$, prove that $\tan^{-1}\frac{b}{a+c} + \tan^{-1}\frac{c}{a+b} = \frac{\pi}{4}$, where a, b, c are sides of the triangle.
- g. If $A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$, *evaluate* $A^2 6A + 8I$, where I is the Identity matrix of the given order.

Answer any three questions

- 3 a. Find the equation of the line passing through intersection of the lines x + 3y 7 = 0 and 3x y 11 = 0 and centroid of the triangle whose vertices are the points (3,-1), (1, 3) and (2, 4).
 - b. Evaluate $\sin 18^{\circ}$.
- 4 a. Find the equation of the plane passing through the point (-1, 3, 2) and perpendicular to the planes x+2y+2z=5 and 3x+3y+2z=8.
 - b Solve by Cramer's Rule 2x+3y=1 and -x+y=-3
- 5 If $A + B + C = \pi$, prove that $sin^2 A + sin^2 B + sin^2 C = 2 + 2 \cos A \cos B \cos C$
- Find the equation of a sphere whose centre lies on the plane x+y+z=0 and which passes through the points (1,-3,4),(1,-5,2) and (1,-3,0) .
- 7 a. Evaluate $\tan^{-1} \left[\frac{\sqrt{1-\sin x} + \sqrt{1+\sin x}}{\sqrt{1-\sin x} \sqrt{1+\sin x}} \right]$
 - b. Find the value of 'a' so that the points (1, 4), (2,7), (3,a) are collinear. 4