

## 2<sup>nd</sup>. SEM. /COMMON/ 2022(S) TH-3 -ENGINEERING MATHEMATICS -II

Full Marks: 80

Time- 3 Hrs

Answer any five Questions including Q No.1& 2 Figures in the right hand margin indicates marks

1. Answer All questions  $2 \times 10$ 

- a. Define Modulus Function and represent it graphically. 1.
  - b. Evaluate  $\lim_{x\to 0} \frac{x}{\sqrt{1+x}-\sqrt{1-x}}$
  - Differentiate  $\sec^{-1}\left(\frac{\sqrt{a^2+x^2}}{a}\right)$  with respect to x.
  - d. Define unit vector and find the unit vector of the given vector  $2\hat{i} + 3\hat{i} + 6\hat{k}$ .
  - e. Evaluate the integral  $\int (e^{5 \ln x} e^{4 \ln x}) dx$ .
  - Define Homogeneous Function and State Euler's Theorem.
  - g. Find the value of  $\alpha$  so that  $\vec{a} = \hat{i} + \hat{j} + \alpha \hat{k}$ ,  $\vec{b} = 4\hat{i} 3\hat{k}$  are perpendicular to each other.
  - h. Find the order and degree of the following differential equation

$$\frac{d^2y}{dx^2} = \frac{3y + \frac{dy}{dx}}{\sqrt{\frac{d^2y}{dx^2}}}$$

- i. Find the value of  $\int_{-2}^{2} |x| dx$ .
- j. If  $y = t^2$  and  $x = t^3$  find  $\frac{dy}{dx}$  at t = 1.

 $6 \times 5$ 

2. Answer Any six questions:

- If  $f(x) = \begin{cases} ax^2 + b, & \text{if } x < 1 \\ 1, & \text{if } x = 1 \end{cases}$  is continuous at x = 1, then find the 2ax b, & if x > 1
  - value of 'a' and 'b'
- b. Find  $\frac{dy}{dx}$  if  $y = (\ln x)^{tanx}$ .
- c. Determine the area within the curve  $y^2 = 4ax$  and the x-axis, the ordinate x=4.
- d. Evaluate  $\int \frac{\tan x + \tan \alpha}{\tan x \tan \alpha} dx.$ e. Solve  $(1 + x^2) dy + (1 + y^2) dx = 0.$

- f. Find the scalar and vector projections of the vector  $2\hat{\imath} 3\hat{\jmath} 6\hat{k}$  on the line joining the points (3,4,-2) and (5,6,-3).
- g Find  $\frac{dy}{dx}$  if  $x = \frac{2t}{1+t^2}$ ,  $y = \frac{2t}{1-t^2}$ .

3 i If 
$$\sqrt{1-x^6} + \sqrt{1-y^6} = k(x^3 - y^3)$$
, prove that 
$$\frac{dy}{dx} = \frac{x^2}{y^2} \sqrt{\frac{1-y^6}{1-x^6}}$$

- ii Evaluate  $\lim_{x\to 0} \frac{1-\cos^3 x}{x\sin 2x}$ .
- 4 i If  $u = \tan^{-1}(x^2 + y^2 + z^2)$ , show that  $xu_x + yu_y + zu_z = \sin 2u$  7
  - ii If sum of two unit vectors is a unit vector, show that the magnitude of 3 their difference is  $\sqrt{3}$ .
- 5 i Evaluate  $\int \frac{2x+11}{\sqrt{x^2+10x+29}} dx$ . 6 ii If  $y = \tan^{-1} x$ , prove that  $(1+x^2)y_2 + 2xy_1 = 0$  4
- 6 i Solve the following differential equation  $(1+y^2)dx = (\tan^{-1}y x)dy$  ii Find the derivative of  $y = e^x$  by first principle. 3
- 7 i In a triangle AOB, angle  $AOB=90^{\circ}$ . If P, Q are the points of trisection of  $\overline{AB}$ , prove that  $OP^2 + OQ^2 = \frac{5}{9}AB^2by\ vector\ method$ .
  - ii Evaluate  $\int e^x \left(\frac{1}{x^2} \frac{2}{x^3}\right) dx$ .