
III-SEM./CIVIL ENGINEERING/2021(W)

TH-I Structural Mechanics

Time- 3 Hrs

Full Marks: 80

		Answer any five Questions including Q No.1& 2 Figures in the right hand margin indicates marks	
1		Answer All questions	2 x 10
•	a	Define perpendicular axis theorem.	
	b	Define poisson's ratio.	
	c	State Hooke's law.	
	. d . e . f	Write down the value of maximum B.M in case of a simple supported beam of length l carrying a point load of W at its center. Draw the shear stress distribution diagram for a rectangular section and I section. Define section modulus.	
	g	Define modulus of rigidity modulus.	
	h	What is point of contraflexure.	
	i	Write down the relation between elastic modulus and bulk modulus.	
	j	Differentiate between statically determinate and statically indeterminate structure.	
2		Answer Any Six Questions	5X6
•	a	Draw the neat sketch of stress strain diagram for mild steel and explain the salient points.	
	b	The modulus of rigidity of a material is 0.8×10^5 N/mm ² . When a	
	c	6mmx6mm rod of this material was subjected to an axial pull of 3600N it was found that the lateral dimension of the rod changed to 5.9991 x 5.9991mm. Find the Poisson's ratio and the modulus of elasticity. A brass bar having cross-sectional area of 1000mm ² is subjected to an	
	•	axial force as shown in figure. Find the change in length of the bar. Take $E=1.05 \times 10^5 \text{ N/mm}^2$.	

- d Draw the shear force and bending moment diagram of a cantilever beam
- . of length '1' carrying a concentrated load W at the free end.
- e Write down the assumptions in pure bending.

.

- f A timber beam 100mm wide 150mmdeep supports a uniformly
- . distributed load over a span of 2meters. If the safe stresses are 28N/mm² in bending and 2N/mm² in shear, calculate the maximum load which can be supported by the beam.
- g A steel rod is 5m long & 50mm diameter is used as a column with one end fixed & other end free. Determine the crippling load by Euler's formula. Take E as 200Gpa.
- A beam AB 10 meters long has supports at its ends A and B. It carries a point load of 5 KN at 3 meters from A and a point load of 5 KN at 7 meters from A and a uniformly distributed load of 1 KN per meter between the point loads. Draw SF and BM diagrams for the beam.
- Find the moment of inertia of a T- section with flange as 150mm 10 x150mm and web as 150mm x50mm about x-x and y-y axis through the centre of gravity of the section.

10

- Derive the formula for slope and deflection for a simply supported beam AB of span l carrying a uniformly distributed load of w per unit run over the whole span. Also find the maximum deflection and slope at A.
- a) Define principal stress and principal plane.
 b) A beam of rectangular cross section is 300mm wide and 500mm deep.
 If the section is subjected to a maximum shear force of 50 KN, Find the maximum shear stress and draw the shear stress distribution along the depth of the beam.
- a) Write down the assumptions in pure torsion.
 b) A solid shaft of 200mm diameter has the same cross sectional area as that of a hollow shaft of the same material with the inside diameter 150mm. Find the ratio of power transmitted by the two shafts at the same speed.