KIIT POLYTECHNIC, BHUBANESWAR LESSON PLAN

Session (2023-2024)

Discipline :	Semester:	Name of the Teaching Faculty:
Mechanical	6 th	Tushar KantaMahapatra, Lecturer.
Engineering	(Summer-2024)	Email: tushar.mahapatrafme@kp.kiit.ac.in
Subject:	No. Of Days/	Start Date : 16/01/2024
Industrial Robotics	Week: 4	End Date : 26/04/2024
& Automation		
Week	Class Day	Theory Topics
1 st	1 st	Definition of Robot, Describe Robot anatomy
	2 nd	Describe Robot Components: Manipulator, End effectors,
		Driver, Actuator.
	3 rd	State the objectives of Robot, Advantages and disadvantages
		of robots.
	4 th	History of Robots
2^{nd}	1 st	Classification of robots; Cartesian, Cylindrical, Spherical,
		Scara, Vertical Coordinate System.
	2 nd	Structural Characteristics of robots; Mechanical rigidity; Effects of
		structure on control work envelope and work
		Volume.
	3 rd	Application of Robot for human comfort.
	4 th	Assignment Evaluation
3 rd	1 st	Review class
	2 nd	Class Test
	3 rd	Importance of Actuators and classify Linear actuator; Rotary
		drives. Hydraulic, and Electrical drives
	4 th	Describe the application and working Pneumatic drives,
		Hydraulic, and Electrical drives
4 th	1 st	AC servo motor; DC servo motors and Stepper motors;
4		Conversion between linear and rotary motion.
	2 nd	Working of AC/ DC servo motor.
	3 rd	Type of drive system used in Robot
	∆th	Feedback devices; Potentiometers; Optical encoders; DC
	-	tachometers.
5 th	1 st	
	1	Robot controller; Level of Controller; Open loop and Closed
	2 nd	loop controller.
		Microprocessor based control system; Robot path control:
	3 rd	Point to point.
	3.4	Continuous path control and Sensor based path control;
	4th	Controller programming.
	4 th	Assignment Evaluation
6 th	1 st	Review class / Drought clearing class
	2 nd	Quiz Test
	3 rd	Requirements of a sensor application.
	4 th	Principles and Applications of the following types of sensors:
		Position sensors (Encoders, Resolvers,)

7 th	1 st	Position sensors (Piezo Electric sensor)
	2 nd	Range sensors, state Triangulation Principle. Explain
		structured lighting approach.
	3 rd	Types of Sensor and there application area
	4 th	State the importance of Proximity sensing, Force and torque
		sensing.
8 th	1 st	Review class
	2 nd	Assignment Evaluation
	3 rd	Class Test
	4 th	Robot vision system (scanning and digitizing image data)
9 th	1 st	Image processing and analysis.
	2 nd	Cameras (Acquisition of images)
	3 rd	Videocon camera (Working principle & construction)
	4 th	Applications of Robot vision system: (Inspection,
		Identification, Navigation & serving).
10 th	1 st	Use of Robot vision system
	2 nd	Review class
	3 rd	Assignment Evaluation
	4 th	Class Test
11 th	1 st	Explain Forward Kinematics and Inverse Kinematics;
11		State the differences between the two Kinematics.
	2 nd	Forward Kinematics and Reverse Kinematics of
		Manipulators with Two Degrees of Freedom (In 2
		Dimensional)
	3 rd	Problems Discussion
	4 th	Teach Pendant Programming
12 th	1 st	Lead through programming
12	2 nd	Robot programming Languages;
		VAL Programming.
	3 rd	Programming writtening
	4 th	Motion Commands; Sensor Commands; End effecter
	•	commands; and Simple programs.
13 th	1 st	Review class
	2 nd	Assignment Evaluation
	3 rd	Class Test
	4 th	Basic elements of automated system, advanced automation
		functions, State level of Automation
14 th	1 st	Application of robots in machining; welding, Assembly and
		Material handling.
	2 nd	Use of Robot in Automobile Industry.
	3 rd	Robot application in hazardous environment.
	4 th	Assignment Evaluation
15 th	1 st	Class Test
	2 nd	Discussion on Previous year question paper
	3 rd	Discussion on Previous year question paper Discussion on Previous year question paper
	4 th	Discussion on Previous year question paper Discussion on Previous year question paper
		Procussion on receious year question paper