KIIT POLYTECHNIC Department of Mechanical Engineering

LESSON PLAN

Session	::	Winter – 2022
Course Type	::	Theory
Semester/Branch	::	3 rd Semester, Mechanical Engineering
Subject (with code)	::	Strength of Material (Th.2)
Contact hours/week	::	4
Name of Faculty	::	Prasant Kumar Patra

SL. NO.	CLASS ID	COURSE CONTENT	MODE OF Delivery	EXHIBIT/ REFERENCE
1	1	Introduction to Strength of Material. Types of loads, stresses & strains (Axial and tangential).	Lecture (Model)	https://youtu.be/GkFgys ZC4Vc https://youtu.be/IpMZN pWjsk4
2	2	Poisson's ratio, Lateral and Linear strain. Hooke's law. Young's modulus, bulk modulus, modulus of rigidity.	Lecture (Explanation)	 Study Material (Book) Strength of
3	3	Relation between Elastic constants		Material book by R.S.
4	4	Determination of stress, strain, deformation.	Problem based	Khurmi
5	5	Determination of poisons ratio and elastic constant	Learning	3. (Book) Mechanics of
6	6	Principle of super position.		Material book by S.
7	7	Stresses in composite section.		Ramamrutham
8	8	Temperature stress and strain		
9	9	Temperature stress in composite bar (single core).		
10	10	Strain energy and resilience, Stress due to gradually applied, suddenly applied and impact load	Lecture (Explanation)	NPTEL Lecture by Dr. Satish C Sharma <u>https://nptel.ac.in/course</u> <u>s/112107146</u>
11	11	Class Test/Assignment		
12	12	Introduction to Thin cylinder and spherical shell. Assumption for thin cylindrical shell. Hoop and longitudinal stress and strain.	Lecture (Explanation)	 Study Material (Book) Strength of
13	13	Determination of safe thickness, pressure or diameter of thin cylindrical shell based on Hoop stress and longitudinal stress.	Problem based Learning	Material book by R.S. Khurmi 3. (Book) Mechanics of Material book by S. Ramamrutham
14	14	Hoop strain, Longitudinal strain, change in dimensions and volume.	Lecture (Explanation)	 Study Material (Book) Strength of
15	15	Determination of change in dimensions of thin cylindrical shell.	Problem based Learning	Material book by R.S. Khurmi 3. (Book) Mechanics of Material book by S. Ramamrutham

16	16	Type of beams and loads. Concepts of	Lecture	1. Study Material
		Shear force and bending moment.	(Explanation)	
17	17	Sign convention. Relationship between SF, BM and Loading	Lecture (Explanation)	2. (Book) Strength of Material book by R.S.
18	18	Draw Shear Force and Bending moment	Problem based	Khurmi
10	10	diagram in cantilever beam subjected to	Learning	
		point load.	8	3. (Book) Mechanics of
19	19	Draw Shear Force and Bending moment	Problem based	Material book by S.
		diagram in cantilever beam subjected to	Learning	Ramamrutham
		U.D.L.	_	
20	20	Draw Shear Force and Bending moment	Problem based	
		diagram in simply supported beam	Learning	
		subjected to point load.		
21	21	Draw Shear Force and Bending moment	Problem based	
		diagram in simply supported beam	Learning	
		subjected U.D.L.	D 11 1 1	•
22	22	Draw Shear Force and Bending moment	Problem based	
		diagram in overhanging beam subjected to point load.	Learning	
23	23	Draw Shear Force and Bending moment	Problem based	
23	23	diagram in overhanging beam subjected	Learning	
		U.D.L.	Leaning	
24	24	Class Test/Assignment		
25	25	Revision		
26	26	Introduction to Theory of simple bending,	Lecture	1. Study Material
		Assumptions in the theory of bending	(Explanation)	
27	27	Theory of simple bending	Lecture	2. (Book) Strength of
			(Explanation)	Material book by R.S.
28	28	Determination of Section modulus of	Problem based	Khurmi
20	20	rectangular and circular beam sections	Learning	2 (Dack) Machanics of
29	29	Determination of bending stress, bending moment and load.	Problem based	3. (Book) Mechanics of Material book by S.
		moment and load.	Learning	Ramamrutham
30	30	Define column, types of columns, Axial	Lecture	1. Study Material
		load, Eccentric load and Buckling load on	(Explanation)	
		column	× • /	2. (Book) Strength of
31	31	Direct stresses, Bending stresses, Maximum	Lecture	Material book by R.S.
		& Minimum stresses in short column: for	(Explanation)	Khurmi
		uniaxial and biaxial system		
32	32	Determination of resultant stress in column	Problem based	3. (Book) Mechanics of
22	22		Learning	Material book by S. Ramamrutham
33	33	Buckling load computation using Euler's formula (no derivation) in Columns with	Lecture (Explanation)	Kamannuunann
		various end conditions	(Explanation)	
34	34	Class Test/Assignment		
35	35	Torsion in shafts, Assumption of pure	Lecture	1. Study Material
		torsion	(Explanation)	2. (Book) Strength of
36	36	Theory of pure torsion	Lecture	Material book by R.S.
			(Explanation)	Khurmi
37	37	Torsion equation for solid and hollow	Lecture	
		circular shaft	(Explanation)	3. (Book) Mechanics of
38	38	Comparison between solid and hollow shaft	Lecture	Material book by S.
		subjected to pure torsion, torsional rigidity,	(Explanation)	Ramamrutham
39	39	Problem solving using torsion equation	Problem based	
			Learning	

40	40	Introduction to 2-dimensional stress	Lecture	1. Study Material
		system; Concept of Principal plane,	(Explanation)	
		Principal stress and strain; Stresses in		2. (Book) Strength of
		oblique plane		Material book by R.S.
41	41	Determination of normal stress, shear stress	Problem based	Khurmi
		and resultant stress on an oblique plane of a	Learning	
		body which subjected to (i) direct stress in		3. (Book) Mechanics of
		one direction only.		Material book by S.
42	42	Determination of normal stress, shear stress	Problem based	Ramamrutham
		and resultant stress on an oblique plane of a	Learning	
		body which subjected to (ii) direct stress in		
		two perpendicular directions.		
		Determination of normal stress, shear stress	Problem based	
43	43	and resultant stress on an oblique plane of a	Learning	
		body which subjected to (iii) shear stress		
		only.		
44	44	Determination of normal stress, shear stress	Problem based	
		and resultant stress on an oblique plane of a	Learning	
		body which subjected to (iv) direct stress in		
		one direction and followed by shear stress.		
45	45	Determination of normal stress, shear stress	Problem based	
		and resultant stress on an oblique plane of a	Learning	
		body which subjected to (iv) direct stress in		
		two perpendicular directions and followed		
16	16	by shear stress.		
46	46	Class Test/Assignment		
47	47	Revision		
48	48	Revision		

Signature of Concern Teacher