

# **LECTURE NOTES**

# ON

# **DIGITAL SIGNAL PROCESSING**

# **Compiled by**

# Mr. Abhiram Pradhan

(Lecturer in Department of Electronics and Telecommunication Engineering, KIIT Polytechnic BBSR) Mail Id: abhiramfet@kp.kiit.ac.in

# CONTENTS

| SL.No | Chapter Name                    | Page No |
|-------|---------------------------------|---------|
| 1     | INTRODUCTION OF SIGNALS,        | 3       |
|       | SYSTEMS & SIGNAL PROCESSING     |         |
| 2     | DISCRETE TIME SIGNALS & SYSTEMS | 7       |
| 3     | THE Z-TRANSFORM & ITS           | 20      |
|       | APPLICATION TO THE ANALYSIS OF  |         |
|       | LTI SYSTEM.                     |         |
| 4     | DISCUSS FOURIER TRANSFORM: ITS  | 29      |
|       | APPLICATIONS PROPERTIES.        |         |
| 5     | FAST FOURIER TRANSFORM          | 33      |
|       | ALGORITHM & DIGITAL FILTERS.    |         |

# CHAPTER -1 INTRODUCTION OF SIGNALS, SYSTEMS & SIGNAL PROCESSING

# 1.1. Discuss Signals, Systems & Signal Processing

# 1.1.1. Explain basic elements of a digital signal processing

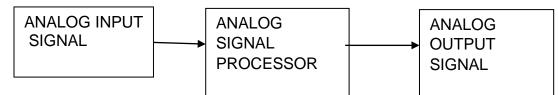
**Signal:** A signal is defined as any physical quantity that varies with time, space or any other independent variable or variables.

**System:** It is defined as the physical device that performs an operation upon the signal. **Signal Processing:** - The operation which one carried out in the signal by the system one called as signal processing.

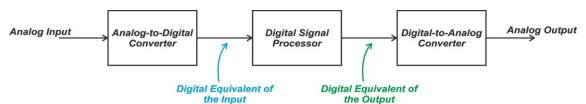
# 1.1.2. Explain basic elements of digital signal processing.

- > Most of the signals encountered in science and engineering are analog in nature.
- That is, the signals are functions of a continuous variable, such as time or space. And usually take on values in a continuous range.
- > Such signals are processed directly by appropriate analog systems.

DIAGRAM



> Digital signal processing provides an alternative method for processing the analog signal.



# ADC (Analog to digital converter)

- It is the interface between analog signal and digital signal processor.
- It converts analog signal to digital data.

# Digital signal processor

- It is nothing only a programmable microprocessor programmed to perform the desired operation on the inputted signal.
- The digital signal processor may be a large programmable digital computer or a small microprocessor programmed to perform the desired operations on the input signal.
- It may also be a hardwired digital processor configured to perform a specified Set of operations on the input signal.

# DAC (digital to Analog converter)

It is the interface between processed digital data and output analog signal.
 Digital Signal Processing
 3
 Abhiram Pradhan

### 1.2. Classify signals

- The methods we use in processing a signal or in analyzing the response of a system to a signal depend heavily on the characteristic attributes of the specific signal.
- There are techniques that apply only to specific families of signals. Consequently, any investigation in signal processing should start with a classification of the signals involved in the specific application.

#### Multi channel signal

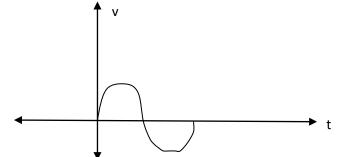
- The signal which is generated by multiple sources or multiple sensors and are represented in vector form is called as multichannel signal.
- Example : Earth quake generated wave , Electrocardiogram(ECG ) 3-channel ,12channel .

#### **Multi-dimensional signal**

- The signal which is a function of more than one independent variables are called as multidimensional signal.
- > Example :  $f(x,y) = x^2 + 2y+3$

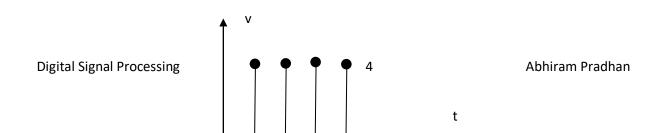
# Continuous time signal

- The signal which can be defined for every point of time in an interval is called as continuous time signal.
- $\succ$  Example: X (t) = cos $\pi$ t.



#### **Discrete time signal**

- > The signal which is only defined on specific point of time is called discrete time signal.
- ➤ Example:  $X(n) = 2^n$ ,  $n \ge 0$



# Continuous valued signal:

The signal which takes on all possible values on a finite or an infinite range is called as continuous valued signal.

# Discrete valued signal:

The signal which takes on values from a finite set of possible values is called as discretevalued signal.

# **1.3 Concept of frequency**

- > The concept of frequency is closely related to concept of time.
- > The nature of frequency is affected by nature of time (continuous or discrete).
- Frequency is an inherently positive physical quantity, but for mathematical convenience we use +ve and –ve frequency.
- > Frequency range for analog sinusoids is  $-\infty < F < \infty$ .
- > Frequency range for discrete sinusoidal is -1/2 < f < 1/2.

# 1.4 Analog to Digital & Digital to Analog conversion & explain the following.

# Sampling of Analog signal

- > Sampling is defined as selection of values of an analog signal at discrete-time instants.
- Sampling can be done in many ways but uniform sampling or periodic sampling is most used.
- > The sampled signal  $X(n) = X_a(nT)$ ,  $\infty < n < \infty$

# Sampling theorem

- The theorem states that any signal X(t) having finite energy, which has no frequency components higher than f<sub>h</sub> Hz, can be completely described and reconstructed from its samples per second.
- This sampling rate of 2f<sub>h</sub> samples per second is called as the Nyquist rate and its reciprocal (1/2f<sub>h</sub>) is called as the Nyquist period.

# Quantization of continuous amplitude signals

- The process of converting a discrete –time continuous amplitude signal into a digital signal by expressing each sample value to a finite number of digits is called as quantization.
- The error resulted in representing the continuous valued signal by a finite set of discrete values is called quantization error quantization noise.

# Coding of quantized sample

- > It is the process of assigning unique value to each level.
- > The word length of 'b' bits we can create 2<sup>b</sup> different binary numbers.
- > Hence  $2^{b} ≥ L$ .

## Digital to analog conversion

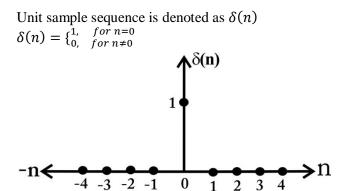
- To convert a digital signal into its corresponding analog signal a digital to analog (D/A) converter.
- > By interpolating the samples, a rough sketch of analog signal can be obtained.

# **CHAPTER-2**

# **DISCRETE TIME SIGNALS & SYSTEMS**

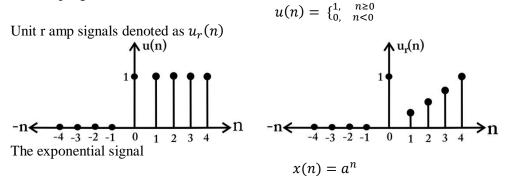
**2.1** State and explain discrete time signals.

# 2.1.1. Some elementary discrete time signals.



In words the unit sample sequence is a signal which give only u nit value at n = 0 and Zero value except  $n \neq 0$ .

Unit Step signal is denoted as u(n)



If a is real, then x(n) is a real signal If a is complex valued then x(n) is an exponential signal.

$$a = re^{j\theta}$$
  

$$x(n) = r^n e^{jn\theta} a$$
  

$$= r^n (\cos \theta \, n + j \sin \theta \, n)$$

**2.1.2.** Classify discrete time signal.

Depending upon the various characteristics of the signals the discrete time signals are can be classified as.

- (i) Energy signal & process signals.
- (ii) Periodic and a periodic singles.
- (iii) Symmetric (even) and antisymmetric (odd) signals.

(i) Energy signal & process signals

- $\rightarrow$  The signal which has finite energy and zero average process.
- $\rightarrow x(t)$  is an energy signals if  $0 < E < \infty$  and p = 0 where  $E \rightarrow$  energy and  $P \rightarrow$  process of the signals x(t).

$$E = \int_{-\infty}^{\infty} x^{2}(t)dt \quad \text{for real signal.}$$
$$E = \int_{-\infty}^{\infty} x^{2}(t)dt \quad \text{for complex valued signal.}$$
$$E = \sum_{n=-\infty}^{\infty} |x(n)|^{2} \quad \text{for discret} - \text{time signal } x(n)$$

- $\rightarrow$  Energy of 0 signals must be finite.
- $\rightarrow$  Non periodic signals are energy signals .

Power signal.  $\rightarrow$  These signals are fine limited  $\rightarrow$  Power energy signal is Zero.

- $\rightarrow$  The signal which has finite average power and infinite energy.
- $\rightarrow x(t)$  is a power signal of  $0 and <math>E = \infty$

For real signal average power

$$P = \lim_{T \to \infty} \frac{I}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} x^2(t) dt.$$

For complex valued signal average power *P* is

$$P \lim_{T\to\infty} \frac{I}{T} \int_{\frac{-T}{2}}^{\frac{1}{2}} (xt)^2 dt.$$

For discrete time signal

$$P \lim_{N \to \infty} \frac{I}{N} \sum_{n = \frac{-n}{2}}^{\frac{N}{2}} |x(n)|^2$$

- $\rightarrow$  Practical periodic signals are power signals.
- $\rightarrow$  These signals can exist over infinite time.
- $\rightarrow$  Energy of the power signal is infinite.

#### (ii) riodic signals

## periodic signals

 $\rightarrow$  The signal which exhibits a definite  $\rightarrow$  The signal which does

|                | pattern and repeats after certain not repeat                                  |
|----------------|-------------------------------------------------------------------------------|
|                | amount of time (T) $\rightarrow$ fundamental $\rightarrow$ Period is infinity |
|                | period.                                                                       |
|                | $\rightarrow x(t+T) = x(t), -\infty < t < \infty$                             |
|                | $x(n+N_0) = x(n), -\infty < n < \infty$                                       |
|                | $N_0 =$ Sampling period.                                                      |
| ( <b>iii</b> ) | <u>Even</u> <u>Odd</u>                                                        |
|                | $\rightarrow$ The signal which exhibits symmetry $\rightarrow$ The sign       |
|                | in time domain is called even signal                                          |
|                | e                                                                             |
|                | $\rightarrow$ Mathematically                                                  |

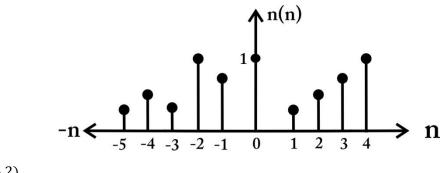
- **2.1.3.** Discuss simple manipulation of discrete time signal.
  - Manipulation or modification of a signal always involves independent variable and dependant variable (signal amplitude)
    - $\rightarrow$  Transformation of the independent variable (Time)
    - Transformation involves shifting of a signal. x(n) by replacing independent variable n. by n-k, where k is +ve or -ve constant. When k is +ve constant for example. x(n-2) is called delay operation.
    - $\rightarrow$  Time delay operation is denoted as TD.

Advancing of signal

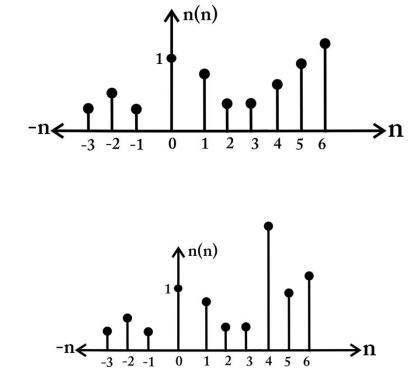
When K becomes – ve constant the signal operation is called advancing operation :

Ex. x(n + 2)

x(n)



x(n-2)



#### Folding or reflection

x(n + 2)

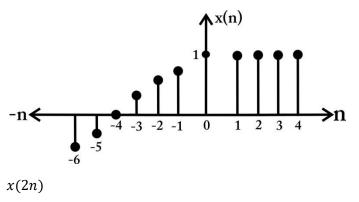
It x(n) is n is replaced by – n then this operation is called folding on reflection of the signal about the time origin n=0.

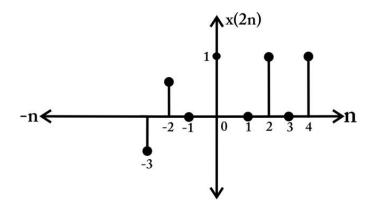
- $\rightarrow$  The time folding operation is denoted as FD
- $\rightarrow$  The TD & FD are not commutative

Time scaling and down sampling

It the independent variable of x(n), n is replaced by un, whre u is an integral called as time scaling or down sampling.

x(n)





#### Amplified scaling

This operation is done by simply multiplying a constant value to every signal sample.

$$y(n) = At x(n) - \infty < n < \infty$$

#### Addition

The seam of two signals  $x_1(n) \& x_2(n)$  is a signal y(n), whose value of any instant of time is addition of  $x_1(n) \& x_2(n)$  at that same instant.

$$y(n) = x_1(n) + x_2(n) - \infty < n < \infty$$

Product

The product of two signals is similarly defined on product of sample to sample basis

$$y(n) = x_1(n)x_2(n) - \infty < n < \infty$$

#### 2.2 Discrete time system

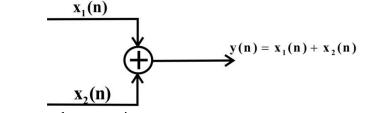
#### 2.2.1 Describe input –output of the system

In a discrete time system, the output and input are always described by a rule or a mathematical relationship.

This mathematical relationship denoted by  $x(n) \xrightarrow{T} y(n)$ . When  $y(n) \rightarrow$  response at the system to the excitation or input x(n)

2.2.2 Block diagram representation of discrete time system.

Addition: An addition performs the addition of two signal sequences to form another (sum) sequence.



 $\rightarrow$  It is a memory less operation

Multiplication (constant)

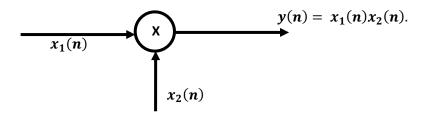
It is a memoryless operation where a constant is multiplied into every sample and depicted as follows.

**Digital Signal Processing** 

$$x(n) \qquad a \qquad y(n) = ax(n)$$

#### Signal multiplier:

It is a memory less operation where we get multiplication of two signals as another sequence ad depicted as follows.

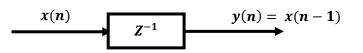


Unit delay element

It is a system which only delays the sample of any sequence by one sample.

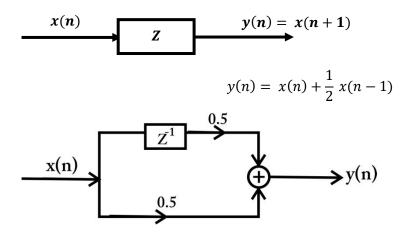
If x(n) is the input the output will be x(n-1)

$$\therefore y(n) = x(n-1)$$



Unit advance element

A unit advance system moves the input sequence x(n) ahead by one sample in time to yield x(n + 1)



#### 2.2.3 <u>Classify discrete time system</u>

Discrete time system can be classified or categorized depending upon it's general properties.

- (i) Static systems and dynamic system.
- (ii) Time invariant system and time variant.
- (iii) Linear system and non linear system.
  - Since for analyzing and designing the designer heavily depends upon the general characteristics of the discrete systems hence for knowing their properties clearly we have to classify them as follows.
- (iv) Causal system and non-causal system.

(v) Stable system and unstable system.

The signal x(t) defined for  $t \in R$  is causal if and only it is zero negative t, otherwise, the signal is non-causal.

$$x(t) = 0$$
, for  $t < 0$ 

#### (i) (a) Static System: (Memory Less System)

If output of a discrete time system at any instant 'n' depends only on that the sample of input at that instant not on future or past input samples in called static system.

Ex.:- 
$$y(n) = ax(n)$$

$$y(n) = 5x(n) + bx^3(n)$$

If output of a discrete time system at any instant 'n' depends upon future or past input samples then the system is called as dynamic system or system with memory.

Ex. y(n) = x(n-1) + 3x(n+1)

### (ii) (a) <u>Time Invariant System: (Shift Invariant System)</u>

If input-output characteristic of a system does not change with time is called time invariant system or shift invariant system.

If input-output characteristic of a system changes with time is called time invariant system or shift invariant system.

# (iii) (a) Linear System.

A linear system is the type of the system which satisfies the superposition principle. **Superposition principle** 

It states that response of the system to a weighted sum of signals be equal to the corresponding weighted sum of the responses of the system to each of the individual input signals.

 $T[a, x, (n) + a_2 x_2(n)] = a_1 T [x_1(n)] + a_2 T [x_2(n)]$ 

Where  $a_1 \& a_2$  are the arbitrary constants and  $x_1(n) \& x_2(n)$  are the arbitrary input sequences.

#### (b) Non liner system:

The system which does not satisfy the superposition principle is called as nonlinear system.

(iv) Causal system & Non-Causal System

**Causal signal:-** The signal x(n) is said to be causal if it's value is zero for n < 0 otherwise the signal is non causal.

## Example of causal signal.

 $x_1(n) = a^n u(n)$ 

$$F_2(n) = \{1, 2, -3, -1, 2\}$$

Non-Causal Signal:- The signal x(n) is said to be non-causal if it's value is zero for n > 0 otherwise the signal is causal.

Example of non-causal signal.

$$x_1(n) = a^n u(-n+1)$$
  
$$x_2(n) = \{1, 2, -3, -1, 2\}$$

**Anti-causal:-** A signal that is zero for all  $n \ge 0$  is called anti-causal signal.

#### Causal System:-

- $\rightarrow$  A system is said to be causal if the output of the system at any time 'n' depends only at present and post inputs, but does not depend on future inputs.
- → Mathematically causal system is represented as

$$y(n) = F[x(n), x(n-1), x(n-2) \dots ]$$

Ex:- y(n) = x(n) + x(n-1)

 $\rightarrow$  Any practical system is a causal system.

#### Non-Causal System :-

A System is said to be non-causal if the output of the system depends on future inputs.

 $\rightarrow$  Mathematically non-causal system is represented as:

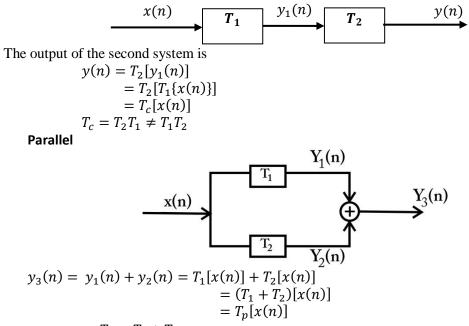
y(n) = F[x(n), x(n + 1), x(n + 2), ....]Ex:- y(n) = x(n + 1) + x(2n) + x(n - 1) $\rightarrow$  It is non practical system.

- $\rightarrow$  In signal processing the study of non-causal system is important.
- (v) Stable System and Unstable System.

#### 2.2.4 Discuss inter connection of discrete time system.

- $\rightarrow$  Interconnection presents a great facility to DSP unlikely ASP.
- → There are two basic ways in which systems can be interconnection. (i) series (cascade) (ii) parallel (cascode)

#### Series (Cascade)



 $T_p = T_1 + T_2$ 

**2.3** Discuss discrete time linear time – invariant system

Digital Signal Processing

### 2.3.1 Discuss different technique for the analysis of linear system.

- A linear time invariant system can be analyzed by two ways
  - $\rightarrow$  One technique involves direct solution of input –output equation for the system.
  - $\rightarrow$  Another technique involves decomposition or resultant of the input signal into elementary signals.

#### > <u>In First type of technique</u>

$$y(n) = F[y(n-1), y(n-2), \dots, y(n-M), x(n), x(n-1)]$$
  
....,  $x(n-M)$   
$$y(n) = -\sum_{k=1}^{N} Q_k y(n-k) + \sum_{k=0}^{M} b_k (n-l) \dots \dots \dots (1)$$

→ Where  $Q_k \& b_k$  are constant parameters state specify the system and are independent of x(n) & y(n).

 $\rightarrow$  Equation (1) is called as difference equation

#### > <u>In Second type of technique</u>

Decomposition of input signal into a weighted sum of elementary signal is given by

 $c_k \rightarrow$  set of amplitudes

 $y_k(n) \rightarrow$  let response of the system to the elementary signal component  $x_k(n)$ . y(n) =Total response of the system to the total signal x(n)

$$y(n) = T[x(n)] = T\left[\sum_{k} l_k x_k(n)\right] [from (02)]$$
$$= \sum_{k} c_k T [x_k(n)]$$
$$= \sum_{k} c_k y_k(n).$$

- 2.3.2 Discuss the resolution of a discrete time signal into impulses :-
  - $\rightarrow$  Any discrete time signal can be decomposed or resolved into impulses.
  - $\rightarrow$  Let x(n) be the discrete time signal to be decomposed. Which have non zero values over infinite duration.
  - $\rightarrow x_k(n) =$  Elementary signal to x(n).

$$x_k(n) = \delta(n-k).$$

Digital Signal Processing

$$\begin{aligned} x(K) &= \\ K &= 0, 1, 2, 3 \dots n \end{aligned}$$

 $x(n)\delta(n-p) = x(p)\delta(n-p)$  for delay n = p.

 $\rightarrow$  If we repeat this multiplication over all possible delays  $-\infty < K < \infty$ 

The sum of all possible products will give

$$x(n) = \sum_{K=-\infty}^{\infty} x(K) \,\delta(n-k)$$

2.3.3 Discuss the response of LTI system to orbiter I/Ps using convolution theorem.

Set the systems response given by y(n) = T[x(n)] .....(1) Impulse sample sequence at n = KMath erotically  $h(n, k) = T[\delta(n - k)]$ Let x(n) be the arbitrary input signal. Expression of x(n) as sum of weighted impulses is given by

$$x(n) = \sum_{K=-\infty}^{\infty} x(K) \,\delta(n-K)$$

Where x(k) = sample value for x(n) at n = K.  $\delta(n - k)$  = unit impulse sample at n = K.

 $\rightarrow$  The response of the system to x(n) is given by

$$y(n) = T[x(n)]$$

$$= T \left[ \sum_{K=-\infty}^{\infty} x(K)\delta(n-k) \right]$$
$$= \sum_{K=-\infty}^{\infty} x(K) T \left[ \delta(n-k) \right]$$
$$u(n) = \sum_{K=-\infty}^{\infty} x(K) h(n,k).$$
.....(2)

Let h(n) be the unit impulse  $\delta(n)$  response of LTI system. i.e. $h(n) = T[\delta(n)]$ 

Since the system is time invariant the response of the system to delayed unit impulse sample  $\delta(n-K)$  is

$$h(n-K) = T[\delta(n-k)] \quad \dots \dots \dots (3)$$

Hence from equation (2) and using equation (3)

$$y(n) = \sum_{K=-\infty}^{\infty} x(K) h(n-K) \dots (4)$$

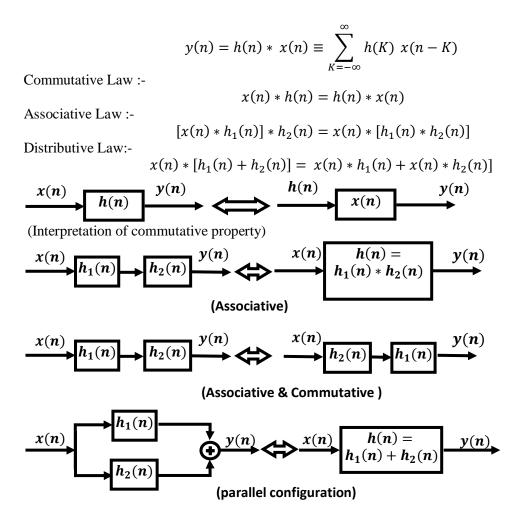
This equation (4) states that, the response y(n) of a signal x(n) by LTI system, is the convolution sum of input signal x(n) & unit impulse response h(n).

2.3.4 Explain properties of convolution and interconnection of LTI system.

 $* \rightarrow$  Symbol for convolution

$$y(n) = x(n) * h(n) \equiv \sum_{K=-\infty}^{\infty} x(K) h(n-k)$$

**Digital Signal Processing** 



2.3.5 Study systems with finite duration and infinite duration impulse response .

Linear time - invariant system one classified as two types depending on response towards impulse

- (i) **FIR System**
- (ii) IIR System
- (i) FIR (Finite-duration impulse Response LTI) System
  - → The LTI System which response a finite duration inpulse sequence is called as FIR system.
  - $\rightarrow$  The response or output to such sequence is given by

$$y(n) = \sum_{K=0}^{M-1} h(K) x(n-K)$$

Since h(n) = 0, n < 0 and  $n \ge M$ 

- $\rightarrow$  FIR System has a finite memory of length –M samples.
- (ii) IIR (Infinite-duration impulse response LTI) system
  - → The LTI system which responds to infinite duration impulse sequence is called as IIR system.

 $\rightarrow$  The response or output to such sequence is given by

$$y(n) = \sum_{K=0}^{\infty} h(K) \ x \ (n-K)$$

 $\rightarrow$  IIR system has infinite memory length.

- 2.4 Discuss Discrete time system described by difference equation.
  - 2.4.1 Explain recursive and non-recursive discrete time system.
    - $\rightarrow$  An IIR System can be easily described by difference equation.

Recursive- Involving a process that is applied repeatedly **Recursive system:** 

- $\rightarrow$  The system whose output / response y(n) at time n depends on any number of post output values like y(n-1), y(n-2) .... and also presented post inputs are called as recursive system.
- $\rightarrow$  Response or output of a recursive system can be given by

$$y(n) = F[y(n-1), y(n-2) \dots$$
  

$$y(n-N), x(n), x(n-1) \dots x(n-M)]$$

 $\rightarrow$  In terms of difference equation . if can be as follows

$$y(n) = \frac{n1}{n+1} \sum_{K=0}^{n} x(K) \quad n = 0, 1, \dots$$

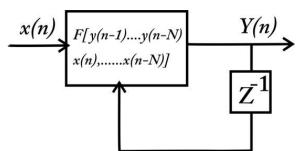
$$(n+1)y(n) = \sum_{K=0}^{n} x(K)$$

$$y(n) = \frac{n}{n+1} y(n-1) + \frac{1}{n+1} x(n)$$
Fountion (1) is difference equation for recursive system

Equation (1) is difference equation for recursive system.

 $\rightarrow$  All recursive system are IIR system also

 $\rightarrow$  The basic realization of recursive system is



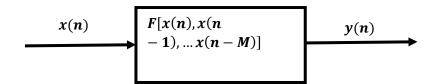
- The recursive system consists of a loop and delay element  $\rightarrow$
- The output of a recursive system can only be computed in order like  $y(n), y(1), \dots \dots$  $\rightarrow$
- $\rightarrow$  Memory cant required

### Non recursive system:-

- $\rightarrow$  The system whose output or response y(n) at time n. depends on only past and present input voters are called as non recursive system.
- $\rightarrow$  Output of non recursive system can be given by

y(n) = F[x(n), x(n-1), ..., x(n-m)] $\rightarrow$  All non recursive system are causal FIR system.

 $\rightarrow$  The basic realization of non recursive system is



- $\rightarrow$  There is no delay and feedback in non delay and feedback in non recursive system.
- $\rightarrow$  Output of a non recursive system can be computed in any order like  $y(20), y(15) \dots$
- $\rightarrow$  Memory less.
- 2.4.2 Determine the impulse response of linear time invariant recursive system.
  - Zerostate = (forced response) :- If a system is initially relaxed at time n = 0, then it's memory is zero hence the system is called in zero state and it's response is called zero state response of forced response.

# **CHAPTER -3**

# THE Z- TRANSFORM AND IT'S APPLICATION TO THE ANALYSIS OF LTI SYSTEM.

**3.1.** Discuss Z-transform and its application to LTI system:

- **3.1.1.** State and explain direct Z-transform
  - $\rightarrow$  Z-transform is a mathematical tool which transformer changes time domain desire the time signal x(n). Into Z-domain.
  - $\rightarrow$  Mathematically Z-transform is defined as.

$$x(Z) = \sum_{n=-\infty}^{\infty} x(n) Z^{-n}$$

 $\rightarrow$  Z-transform of a signal x(n) is denoted by  $x(Z) = Z\{x(n)\}$ 

and this relationship denoted by  $x(n) \underset{Z}{\longleftarrow} x(Z)$ 

 $\rightarrow$  Z- transform is an infinite power series and it's values exist for those values of Z for which this series converges.

#### **ROC (Region of convergence)**

ROC of x(Z). Is defined as the regional set of values of z for which x(Z) attains a finite value. **Problem finding Z-transform** 

Q-1. Determine Z-transform of following finite duration signals.

(a) 
$$x(n) = \{(1,5,6,7,0,8)\}$$

**(b)** 
$$x(n) = \{2,3, 6, 4,0,1\}$$

(c) 
$$x(n) = \{0, 1, 2, 3\}$$

- (d)  $x(n) = \delta(n)$
- (e)  $x(n) = \delta(n K), K > 0$
- (f)  $x(n) = \delta(n+K), K > 0$

(g) 
$$x(n) = \{0, 0, 2, 5, 7\}$$

(a) 
$$x(n) = \{(1, 5, 6, 7, 0, 8)\}$$
  
 $x(Z) = \sum_{n=-\infty}^{\infty} x(n) Z^{-n}$ 

$$= \sum_{n=-3}^{2} x(n) Z^{-n}$$
  
=  $x(-3)Z^3 + x(-2)Z^2 + x(-1)Z^1 + x(0)Z^0 + x(1)Z^{-1} + x(2)Z^{-2}$   
=  $(1)Z^3 + 5Z^2 + 6Z + 7 + 0 + 8Z^{-2}$   
(d)  $x(n) = \delta(n) = 1$   $n = 0$ 

$$= \mathbf{0} \quad \mathbf{n} \neq \mathbf{0}$$

$$x(Z) = \sum_{n=-\infty}^{\infty} x(n) Z^{-n}$$

$$= (1)Z^{0} = 1.....(Ans)$$
(e)  $\mathbf{x}(\mathbf{n}) = \mathbf{\delta}(\mathbf{n} - \mathbf{K})$ 

$$X(Z) = \sum_{n=-\infty}^{\infty} x(n) Z^{-n}$$

$$= (1)Z^{-K}$$
Q.  $x(n) = \delta(n)$ 

$$u(n) = 1, n \ge 0$$

$$= 0 n < 0$$

$$\begin{aligned} x(Z) &= \sum_{n=-\infty}^{\infty} x(n) Z^{-n} \\ &= \sum_{n=-\infty}^{\infty} u(n) Z^{-n} = \sum_{n'=0}^{\infty} (1) Z^{-n} \\ &= 1 + (Z^{-1})^{1} + (Z^{-1})^{2} + (Z^{-1})^{3} + \cdots \infty \qquad S = \frac{1}{a-r}, r < 1 \\ &= \frac{1}{1-Z^{-1}} = \frac{Z}{Z-1} \\ Q^{-}x(n) &= x^{n}u(n) \end{aligned}$$

$$\begin{aligned} x(Z) &= \sum_{n=-\infty}^{\infty} [a^{n} u(n)] Z^{-n} \\ &\sum_{n=0}^{\infty} x^{n} = 1 + r + r^{z} + \cdots = \frac{1}{1+r} \\ &= \sum_{n=0}^{\infty} a^{n} Z^{-n} \\ &= \frac{Z}{Z-a} \\ Q. x(n) &= \cos \omega_{0} n = \cos \theta \\ Q. x(n) &= a^{n} \\ x(Z) &= \sum_{\substack{n=-\infty \\ n=-\infty}^{\infty}} a^{n} Z^{-n} = \sum_{\substack{n=-\infty \\ n=-\infty}^{\infty}} (aZ^{-1})^{n} \\ Q. x(n) &= e^{j\omega n} \\ x(z) &= \sum_{\substack{n=-\infty \\ n=-\infty}^{\infty}} x(n) Z^{-n} \\ &= \sum_{\substack{n=-\infty \\ n=-\infty}^{\infty}} (e^{jw} Z^{-1})^{n} \qquad n > 0 \\ &= \sum_{n=0}^{\infty} (e^{jw} Z^{-1})^{n} \end{aligned}$$

**Digital Signal Processing** 

$$= 1 + (e^{jw}Z^{-1})^{2} + (e^{jw}Z^{-1})^{3} + \dots + > \infty$$
  
$$= \frac{1}{1 - e^{jw}Z^{-1}} = \frac{Z}{Z - e^{jw}}$$
  
(n) = cas  $\omega_{0}n$   $n \ge 0$ 

Q. x(n) = c3.2. Properties of Z-Transform

# (1) Linearity Property

$$x_{1}(n) \xrightarrow{Z} X_{1}(Z)$$

$$x_{2}(n) \xrightarrow{Z} X_{2}(Z)$$

$$x(n) = a_{1}x_{1}(n) + a_{2}x_{2}(n) \xrightarrow{Z} X(Z) = a_{1}X_{1}(Z) + a_{2}X_{2}(Z)$$

$$a_{1} \& a_{2} \text{ are two arbitrary constants.}$$
Problem:-  $x(n) = \cos \omega_{0}n$ ,  $n \ge 0$ 

$$\cos \omega_{0}n = \frac{1}{2} \left( e^{j\omega_{0}n} + e^{-j\omega_{0}n} \right)$$

$$e^{j\theta} = \cos \theta + j \sin \theta$$

$$\sin \omega_{0}n = \frac{1}{2} \left( e^{j\omega_{0}n} - e^{-j\omega_{0}n} \right)$$

$$e^{-j\theta} = \cos \theta - j \sin \theta$$
(2) Time Reversal :-

If 
$$x(n) \xrightarrow{Z} X(Z)$$
  
Then  $x(-n) \xrightarrow{Z} X(Z^{-1})$   
Ex:  $x(n) = 2^n, n < 0$   
 $= \left(\frac{1}{2}\right)^n, n = 0, 2, 4 \dots$   
 $= \left(\frac{1}{2}\right)^n, n = 1, 3, 5 \dots$   
 $X(Z) = \sum_{n=-\infty}^{\infty} x(n) Z^{-n} = \sum_{n=-\infty}^{-1} 2^n Z^{-n} + \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n Z^{-n} + \sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n Z^{-n}$   
 $= \sum_{m=1}^{\infty} 2^{-m} \cdot Z^m + \sum_{p=0}^{\infty} \left(\frac{1}{2}\right)^2 \cdot Z^{-2p} + \sum_{q=0}^{\infty} \left(\frac{1}{3}\right)^{2q+1} Z^{-(2q+1)}$   
 $= -n, \quad p = \frac{n}{2}, \quad q = \frac{n-1}{2}$   
 $= \sum_{m=1}^{\infty} \left(\frac{Z}{2}\right)^m + \sum_{p=0}^{\infty} \left(\frac{Z^{-1}}{2}\right)^{2p} + \sum_{q=0}^{\infty} \left(\frac{Z^{-1}}{3}\right)^{2q+1}$   
 $= \left(\frac{Z}{2}\right) + \left(\frac{Z}{2}\right)^2 + \dots \infty +$   
 $= (\because \ a + a^2 + a^3 + \dots \infty) = \frac{a}{1-r}$   
 $= \frac{\frac{Z}{2}}{1-\frac{Z}{2}} +$   
Q.  $x(n) = a^n / x(n) = a^{-n}$ 

**Digital Signal Processing** 

$$X(Z) = \sum_{n=-\infty}^{\infty} x(n)Z^{-n}$$
  

$$= \sum_{n=0}^{\infty} a^n Z^{-n}$$
  

$$= \sum_{n=0}^{\infty} (a Z^{-1})^n$$
  

$$= 1 + (aZ^{-1})^1 + (aZ^{-1})^2 + \cdots \infty$$
  

$$= \frac{1}{1 - aZ^{-1}}$$
  

$$x(n) = a^{-n}$$
  

$$X(Z) = \sum_{n=-\infty}^{\infty} a^{-n} Z^{-n}$$
  

$$= \sum_{n=0}^{\infty} a^{-n} Z^{-n} = \sum_{n=0}^{\infty} [(aZ)^{-1}]^n$$
  

$$= 1 + \frac{1}{(aZ)} + (\frac{1}{aZ})^2 + (\frac{1}{aZ})^3 + \cdots$$
  

$$= \frac{1}{1 - \frac{1}{aZ}}$$
  

$$= \frac{1}{1 - (aZ^{-1})^{-1}}$$

# (3) Time shifting

If 
$$x(n) \xrightarrow{Z} X(Z)$$
  
Then  $x(n - n_0) \xrightarrow{Z} Z^{-n_0} X(Z)$   
(a)  $x(n) = 2^n$ ,  $n > 0$   

$$X(Z) = \sum_{\substack{n = -\infty \\ n = -\infty}}^{\infty} 2^n Z^{-n}$$

$$= 1 + (2Z^{-1})^1 + (2Z^{-1})^2 + \cdots \infty$$

$$= \frac{1}{1 - 2Z^{-1}}$$
(Not Suitable)  
(b)  $x(n) = 2^{n-4}$ ,  $n > 0$   

$$X(Z) = \sum_{\substack{n = -\infty \\ n = -\infty}}^{\infty} (2^{n-4}) Z^{-n}$$

**Digital Signal Processing** 

$$= \sum_{n=0}^{\infty} 2^{n-4} \cdot Z^{-n}$$
$$= 2^{-4} + 2^{-3}Z^{-1} + 2^{-2}Z^{-2} + 2^{-1}Z^{-3} + Z^{-4} + \cdots$$

(c) 
$$x(n) = U(n)$$

$$X(Z) = \sum_{n=-\infty}^{\infty} U(n)Z^{-n}$$
$$= \sum_{n=0}^{\infty} Z^{-n}$$
$$= 1 + \left(\frac{1}{2}\right)^{1} + \left(\frac{1}{2}\right)^{2} + \cdots$$
$$= \frac{1}{1 - \left(\frac{1}{2}\right)}$$
$$(\mathbf{d}) \ \mathbf{x}(\mathbf{n}) = \mathbf{U}(\mathbf{n} - \mathbf{1})$$

$$X(Z) = \sum_{\substack{n=-\infty\\\infty}}^{\infty} U(n-1)Z^{-n}$$
  
=  $\sum_{n=1}^{\infty}Z^{-n}$   
=  $+\left(\frac{1}{2}\right)^{1} + \left(\frac{1}{2}\right)^{2} + \cdots \infty$   
=  $\left(\frac{1}{2}\right)\left[1 + \frac{1}{2} + \left(\frac{1}{2}\right)^{2} + \cdots\right]$   
=  $\frac{1}{2}\left(\frac{1}{1-\frac{1}{2}}\right) = Z^{-1}\left(\frac{1}{1-\frac{1}{2}}\right)$ 

(4) Scaling Property:

If 
$$x(n) \underbrace{Z}_{n} X(Z)$$
  
 $a^n x(n) \underbrace{Z}_{n-1} X(a^{-1}Z)$   
(a)  $x(n) = u(n)$   
 $X(Z) = \sum_{n=-\infty}^{\infty} u(n)Z^{-n}$   
 $= \sum_{n=0}^{\infty} Z^{-n}$   
 $= \frac{1}{1 - \left(\frac{1}{2}\right)} = \frac{Z}{Z - 1}$   
(b)  $x(n) = 2^n u(n)$ 

$$X(Z) = \sum_{n=-\infty}^{\infty} 2^n u(n) Z^{-n}$$
  
=  $\sum_{n=0}^{\infty} 2^n Z^{-n}$   
=  $1 + 2^1 Z^{-1} + 2^2 Z^{-2}$   
=  $1 + (2Z^{-1})^1 + (2.Z^{-1})^2 + \cdots$   
=  $\frac{1}{1 - \frac{2}{Z}} = \frac{1}{1 - 2Z^{-1}}$   
G.P  $S = a \left(\frac{1 - r^n}{1 - r}\right), s = \frac{a}{1 - r} = (r) < 1$   
 $s = \frac{a}{r - 1}$ 

(5) Differentiation property

If 
$$x(n) \underbrace{Z}_{X(Z)} X(Z)$$
  
Then  $n x(n) \underbrace{Z}_{Z} - Z \frac{d(Z)}{dz}$   
Or  $n x(n) \underbrace{Z}_{Z^{-1}} \frac{d \times (Z)}{dz^{-1}}$   
Ex:-  $x(n) = nu(n)$   
 $x (Z) = \sum_{\substack{n = -\infty \\ \infty}}^{\infty} n u(n)Z^{-n} = \sum_{\substack{n = -0 \\ n = -0}}^{\infty} n.Z^{-n}$   
 $= 0 + Z^{-1} + 2Z^{-2} + 3Z^{-3} + \dots \infty$   
 $= Z^{-1}(1 + 2Z^{-1} + 3Z^{-2} + \dots \infty)$   
 $= \frac{d}{dz} Z^{-1} \frac{d}{dZ^{-1}} \left(\frac{1}{1 - Z^{-1}}\right) = Z^{-1} (1 - Z^{-1})^{-2}$   
 $= Z^{-1} (n_{c_0}(1)^n (Z^{-1})^0 + n_{c_1})$   
(6) Convolution property

If 
$$x, (n) \xrightarrow{Z} X_1(Z)$$
 and  $x_2(n) \xrightarrow{Z} X_2(Z)$   
Then  
 $x(n) = x, (n) \times x_2 (n) = \sum_{K=-\infty}^{\infty} x_1(K)x_2(n-K)$   
 $\xrightarrow{Z} X(Z) = x_1(Z).x_1(Z)$ 

#### 3.3. Discus Z- transform

#### 3.3.1. Explain poles and Zones:

X(Z) is a national function if this is ratio of two polynomials in  $Z^{-1}orZ$ 

$$X(Z) = \frac{x_1(Z)}{D(Z)} = \frac{b_0 + b_1 Z^{-1} + \dots + b_M Z^{-M}}{a_0 + a_1 Z^{-1} + \dots + a_n Z^{-N}}$$

$$= \frac{\sum_{K=0}^{M} b_k Z^{-K}}{\sum_{K=0}^{N} a_K Z^{-K}}$$

Zeros : The values of Z at which x(Z)Q = 0 are eared as Zero Poles: The values of z at which  $x(Z) = \infty$  are called as poles

 $\rightarrow$  In representation of x(z) graphically by a pole –Zero plot (pattern) in the complier which shows

the location of poles by crosses (x) and zeros by circles (0)

 $\rightarrow$  Roc should not contain any pole.

KIIT POLYTECHNIC

# **3.3.2.** Determine Pole location and time domain behavior for causal signals.

→ Here we will discuss Z-plane location of pole pair and the form (Shope) of the corresponding signal in the time domain.

|      | <u>Transform</u>      | <u>Fransform</u>                                               |
|------|-----------------------|----------------------------------------------------------------|
| (1)  | $\delta(n)$           |                                                                |
| (2)  | $\delta(n-K)$         | <br>$Z^{-K}$                                                   |
| (3)  | u(n)                  | $\frac{1}{1 - Z^{-1}} = \frac{Z}{Z - 1}$                       |
| (4)  | -u(n-1)               | <br>$\frac{1}{1 - Z^{-1}} = \frac{Z}{Z - 1}$                   |
| (5)  | nu(n)                 | <br>$\frac{Z^{-1}}{(1-Z^{-1})^2} = \frac{Z}{(Z-1)^2}$          |
| (6)  | $a^n u(n)$            | $\frac{1}{1 - aZ^{-1}} = \frac{Z}{Z - 1}$                      |
| (7)  | $a^n u(-n-1)$         | <br>$\frac{Z}{Z-a}$                                            |
| (8)  | $na^nu(n)$            | <br>$\frac{aZ}{(Z-a)^2}$                                       |
| (9)  | $e^{-an}$             | <br>$\frac{Z}{Z - e^{-a}}$                                     |
| (10) | $n^2u(n)$             | <br>$\frac{Z(Z+1)}{(Z-1)^3}$                                   |
| (11) | ne <sup>-an</sup>     | <br>$\frac{Ze^{-a}}{(Z-e^{-a})^2}$                             |
| (12) | $\sin \omega_0 n$     | <br>$\frac{Z\sin\omega_0}{Z^2 - 2Z\cos\omega_0 + 1}$           |
| (13) | $\cos \omega_0 n$     | $\frac{Z (Z - \cos \omega_0)}{Z^2 - 2Z \cos \omega_0 + 1}$     |
| (14) | $a^n \sin \omega_0 n$ | <br><b>—</b> .                                                 |
| (15) | $a^n \cos \omega_0 n$ | <br>$\frac{Z(Z - a\cos\omega_0)}{Z^2 - 2Za\cos\omega_0 + a^2}$ |

## Q-1 Find inverse Z-transform of

$$X(Z) = \frac{Z}{3Z^2 - 4Z + 1}$$
  
By fraction method  
$$X(Z) = \frac{\frac{1}{2}Z}{Z - 1} + \frac{-\frac{1}{2}}{Z - \frac{1}{3}}$$

$$\therefore x(n) = \frac{1}{2}(1)^n u(n) - \frac{1}{2} \left(\frac{1}{3}\right)^n u(n)$$

Q-2 Find inverse Z transform of  $X(Z) = \frac{1+3Z^{-1}}{1+3Z^{-1}+2Z^{-2}}$ , |Z|72 $X(Z) = \frac{1-3Z^{-1}}{1+3Z^{-1}+2Z^{-2}} = \frac{Z(Z+3)}{(Z+1)(Z+2)}$  $\Rightarrow X(Z) = \frac{2Z}{Z+1} - \frac{Z}{Z+2}$  (By portial fraction)  $\therefore x(n)2(-1)^n u(n) - (-2)^n u(n)$ Q-3 Find inverse Z transform of  $X(Z) = \frac{Z(Z^2-4Z+5)}{(Z-1)(Z-2)(Z-3)}$ ∴ By partial fraction  $x(Z) = \frac{Z}{Z-1} - \frac{Z}{Z-2} + \frac{Z}{Z-3}$   $\therefore x(n) = u(n) - (2)^n u(n) + (3)^n u(-n-1)$ Q-4  $X(Z) = \frac{1}{(1-2Z^{-1})(1-Z^{-1})^2}$ Q-5  $X(Z) = \frac{Z^2+Z}{(Z-1)(Z-3)}$ Q-1 Find inverse –Z Transform of  $X(Z) = \frac{Z}{3Z^2 - 4Z + 1}$   $\frac{X(Z)}{Z} = \frac{1}{3Z^2 - 4Z + 1}$   $\Rightarrow \frac{X(Z)}{Z} = \frac{1}{3Z^2 - 4Z + 1}$   $\Rightarrow \frac{X(Z)}{Z} = \frac{1}{3Z^2 - 3Z - Z + 1}$  $= \frac{1}{3Z(Z-1) - 1 (Z-1)}$  $= \frac{1}{(Z-1)(3Z-1)}$ Now by partial fraction method  $\frac{1}{(Z-1)(3Z-1)} = \frac{A}{Z-1} + \frac{B}{3Z-1}$  $\Rightarrow \frac{1}{(Z-1)(3Z-1)} = \frac{A(3Z-1) + B(Z-1)}{(Z-1)(3Z-1)}$  $\Rightarrow 1 = A (3Z - 1) + B (Z - 1)$  $\Rightarrow 1 = A3Z - A + BZ - B$  $= Z \left( 3A + B \right) - A - B$ **By Comp**  $\Rightarrow 1 = Z(3A + B) - A - B$ By Comparing coefficient of Z & constants We get 3A + B = 03(1-B) + B = 0 $\Rightarrow -3B + B + 3 = 0$  $\Rightarrow -2B = -3$  $\Rightarrow B = \frac{3}{2}$ 

$$-A - B = 1$$

$$\Rightarrow -A = B + 1$$

$$\Rightarrow \overline{A = 1 - B}$$

$$A = 1 - \frac{3}{2}$$

$$= 1 - \frac{3}{2} = \frac{1}{2}$$

$$X1\delta\omega \ \frac{X(Z)}{Z} = \frac{\left(\frac{1}{2}\right)}{Z-1} - \frac{\left(\frac{3}{2}\right)}{3Z-1}$$

**Digital Signal Processing** 

$$\Rightarrow \frac{X(Z)}{Z} = \left(\frac{1}{2}\right)\frac{1}{Z-1} - \left(\frac{3}{2}\right)\left(\frac{1}{3Z-1}\right)$$

$$\Rightarrow X(Z) = \left(\frac{1}{2}\right)\frac{Z}{Z-1} - \left(\frac{3}{2}\right)\left(\frac{Z}{3Z-1}\right)$$

$$\Rightarrow X(Z) = \left(\frac{1}{2}\right)\frac{Z}{Z-1} - \frac{3}{2\times3}\left(\frac{Z}{Z-\frac{1}{3}}\right)$$

$$= \left(\frac{1}{2}\right)\left(\frac{Z}{Z-1}\right) - \frac{1}{2}\left(\frac{Z}{Z-\frac{1}{3}}\right)$$

By formula  $x(n) = \left(\frac{1}{2}\right) (1)^n u(n) - \left(\frac{1}{2}\right) \left(\frac{1}{3}\right)^n u(n)$ 

# <u>CHAPTER- 4</u>

## **DISCUSS FOURIER TRANSFORM: ITS APPLICATIONS PROPERTIES**

#### 4.1. Discuses Discrete furriers transform.

- → Discrete Fourier Transform is a computational or mathematical tool for analyzing discreet time signal in frequency domain.
- $\rightarrow$  DFT consents x(n) (Discrete time domain signal of infinite length to discrete frequency sequence X(K) of finite length.
- $\rightarrow$  DFT is obtained by sampling one period of the Fourier transform at finite number of frequency points.

$$\rightarrow x(n) \_ DFT \xrightarrow{} X(K) = X(e^{jw})$$

$$X(K) = \sum_{n=0}^{N-1} x(n) e^{-j (2\pi n) \frac{K}{M}}$$
  

$$\Rightarrow X(K) = DFT [X(n)]$$
  

$$x(n) = \frac{1}{N} \sum_{n=0}^{M-1} X (K) e^{j(2\pi n) \frac{K}{N}}$$
  

$$\Rightarrow x(n) = I Dft [X(n)]$$

Both *n* & *K* are ranging from 0 to N-1  $n \to \text{time index since if denotes time constant } 0 \le n \le N - 1$   $K \to \text{frequency index since if denotes frequency constant } 0 \le K \le N - 1$   $W_N = e^{-j2\frac{\pi}{N}} = \text{Twiddle factor}$  N - Noof Equally spaced sample points. Ex 3:1 = Find DFT  $x(n) = \{1,1,0,0\}$  M = 4  $X(K) = \sum_{n=0}^{M} x(n)e^{-j}(2\pi n)\frac{K}{N}, K = 0 \dots N - 1$  K = 0  $X(0) = \sum_{n=0}^{3} x(n).e^0 = \sum_{n=0}^{3} x(n) (1)$  = x(0) + x(1) + x(2) + x(3) = 1 + 1 + 0 + 0 = 2  $K = 1, X(1) = \sum_{n=0}^{3} x(n).e^{-j(2\pi n)\frac{1}{4}} = \sum_{n=0}^{3} x(n).e^{-j(\frac{\pi n}{2})}$  $= x(0).e^0 + x(1).e^{-j(\frac{\pi}{2})} + x(2) - e^{-j(\frac{\pi 12}{2})} + x(3).e^{j(\frac{\pi 3}{2})}$ 

**Digital Signal Processing** 

K = 0,1,2 N - 1

x(2) = x(3) =Ex.3.2 Find DFT of x(n) = 1 for  $0 \le n \le 2$  = o otherwise
Ex.33 Find 6 point DFT of  $x(n) = \{1,1,1,1,1,\}$ 

## 4.2. Relate DFT to other transform

#### **Relate to fierier transform**

The Fourier transform  $x(e^{jw})$  of a finite duration sequence x(n) having length N is given by

$$x(e^{jw}) = \sum_{n=0}^{N-1} x(n) e^{-j\omega n} \dots (1)$$

Where  $x (e^{j\omega})$  is a continuous transition of  $\omega$ . The DFT of x(n) is given by

$$X(K) = \sum_{n=0}^{N-1} x(n) \ e^{-j \left(\frac{2\pi K}{N}\right)^n} - - - - (2)$$

By comparing with (1) & (2) we get.

$$X(K) = x(e^{jw})|_{\omega = \frac{2\pi K}{N}}$$

# Relate to Z- transform :-

Z- transform of finite duration 'N' sequence x(n) is given by.

$$x(Z) = \sum_{n=0}^{N-1} x(n) Z^{-n} - - - - (1)$$

But by IDFT

$$x(n) = \frac{1}{N} \sum_{K=0}^{N-1} X(K) e^{j\frac{2\pi K n}{N}}$$

By putting x(n) in equation (1) from equation (2) we get

$$\begin{split} X(Z) &= \sum_{n=0}^{N-1} \left[ \frac{1}{N} \sum_{K=0}^{N-1} X(K) e^{j\frac{2\pi K n}{N}} \right] Z^{-n} \\ \Rightarrow X(Z) &= \frac{1}{N} \sum_{K=0}^{N-1} X(K) \sum_{n=0}^{N-1} \left( e^{j\frac{2\pi K / N}{N}} Z^{-1} \right)^n \\ &= \frac{1}{N} \sum_{K=0}^{N-1} X(K) \left[ 1 + e^{j\frac{2\pi K}{N}} Z^{-1} + \left( e^{j\frac{2\pi K}{N}} Z^{-1} \right)^2 + \dots + \left( e^{j\frac{2\pi K}{N}} Z^{-1} \right)^{N-1} \right] \\ &= \frac{1}{N} \sum_{K=0}^{N-1} \left[ \frac{\left( 1 \right) \left[ 1 - \left( e^{j\frac{2\pi K}{N}} Z^{-1} \right)^N \right]}{1 - e^{j\frac{2\pi K}{N}} Z^{-1}} \right] X(K) \\ &= \frac{1}{N} \sum_{K=0}^{N-1} X(K) \left[ \frac{\left( 1 \right) \left( 1 - e^{j2\pi Z^{-N}} \right)}{1 - e^{j\frac{2\pi K}{N}} Z^{-1}} \right] \\ &\Rightarrow \left[ X(Z) = \frac{1}{N} \left( 1 - Z^{-N} \right) \sum_{K=0}^{N-1} \frac{X(K)}{1 - e^{j\frac{2\pi K}{N}} Z^{-1}} \right] \end{split}$$

 $\rightarrow$  Sum of first 'n' terms of geometries sequence is

 $s_n = \frac{a_1(1-r^n)}{1-r}$ ,  $x_1$  = Finet number r = common ration

 $\rightarrow$  Sum of infinite G.P. series, is

$$s_{\infty} = \frac{a}{1-a}$$
,  $a = First$  number

## 4.3. Discuss property of DFT

#### 4.4. Discuss periodicity linearity & symmetry property

Symmetry – if DFT [x(n)] = X(K)Then DFT  $[x^*(n)] = X^*(N - K) = X^*((-K))_N$ It is also called as complex conjugate property Periodicity :- If x(n) & X(K) one on N point DFT pair then. x(n + N) = x(n) for all n. X(K + N) = X(K) for all KLinearity :- if  $x_1(n) \stackrel{DFT}{\longleftrightarrow} X_1(K) & x_2(n) \stackrel{DFT}{\longleftrightarrow} X_2(K)$  $a_1x_1(n) + a_2x_2(n) \stackrel{DFT}{\longleftrightarrow} a_1x_1(K) + a_2x_2(K)$ 

Where  $a_1 \& a_2$  are two arbitrary constants. Multiplication of tow DFTS:

Let  $x_1(n) \& x_2(n)$  be two finite duration sequences of length N. and their DN-point DFTS are.

$$x_{1}(K) = \sum_{\substack{n=0\\N-1}}^{N-1} x_{1}(n) e^{-j 2\pi n \frac{K}{n}}, K = 0, 1, \dots, N-1$$
$$x_{2}(K) = \sum_{\substack{n=0\\N-1}}^{N-1} x_{2}(n) e^{-j 2\pi n \frac{K}{n}}, K = 0, 1, \dots, N-1$$
et  $x_{3}(K) = x_{1}(K), x_{2}(K).$ 

Let  $x_3(K) = x_1(K) \cdot x_2(K)$ By IDFT of  $\{x_3(K)\}$  is

$$\begin{aligned} x_{3}(m) &= \frac{1}{N} \sum_{K=0}^{N-1} X_{3}(K) e^{-\frac{j2\pi Km}{n}} \\ \Rightarrow x_{3}(m) &= \frac{1}{N} \sum_{K=0}^{N-1} \left[ \sum_{n=0}^{N-1} x_{1}(n) e^{-\frac{j2\pi Km}{n}} \right] \left[ \sum_{l=0}^{N-1} x_{2}(l) e^{-\frac{j2\pi Klm}{n}} \right] e^{\frac{j2\pi Km}{n}} \\ \Rightarrow x_{3}(m) &= \frac{1}{N} \sum_{n=0}^{N-1} x_{1}(n) \sum_{l=0}^{N-1} x_{2}(l) \left[ \sum_{K=0}^{N-1} e^{j2\pi K\frac{(m-n-l)}{N}} \right] \\ \Rightarrow \boxed{x_{3}(m)} &= \frac{1}{N} \sum_{n=0}^{N-1} x_{1}(n) x_{2}((m-n))_{N} - - - (1) \end{aligned}$$

This above expression continually that multiplication of two DFTS of two sequences is equivalent to the circular convolution of two sequences in time domain.

 $((m-n))_N \rightarrow \text{circular convolution.}$ 

#### 4.5. Explain multiplication of two DFT. & circular convolution

**4.6.** Let  $x_1(n) \& x_2(n)$  one finite duration sequence both of length *N*.

 $X_1(K)$  &  $x_2(K)$  be DFTs of  $x_1(n)$  &  $x_2(n)$  respectivally Let  $x_3(n)$  be another sequence whose DFT is  $X_3(K)$ Where  $X_3(K) = X_1(K)x_2(K)$ 

From convolution theorem we know

 $x_{3}(n) = \sum_{m=0}^{N-1} x_{1}(m) \cdot x_{2}(n-m) - - - (1)$ (For N number of Samples) The equation (1) can be represented as.  $x_{3}(n) = x_{1}(n)(N)x_{2}(n)$ Hence DET [x (n)(N)x (n)] = X (K) X (K)

Hence DFT  $[x_1(n)(N)x_2(n)] = X_1(K)X_2(K)$ Multiplication If DFT  $[x_1(n)] = X_1(K)$ DFT  $[x_2(n)] = X_2(K)$ Then DFT  $[x_1(n)x_2(n)] = \frac{1}{N}[X_1(K)(n)x + 2(K)]$   $d^{j\theta} = \cos \theta - j \sin \theta$  $e^{-j\theta} = \cos \theta + j \sin \theta$ 

# **CHAPTER-5**

# FAST FOURIER TRANSFORM ALGORITHM & DIGITAL FILTERS

#### 5.1 Compute DFT & FFT. Algorithm

- $\rightarrow$  FFT is a providence for computing
- $\rightarrow$  DFT of a finite series easily
- $\rightarrow$  It is nothing only set of algorithm
- $\rightarrow$  It is used in digital spectral analysis filter simulation, auto connection and pattern recognition.
- $\rightarrow$  FFT is based on decomposition and breaking the transform into smaller transforms and combining them to get the total transform.

$$\rightarrow W_N^0 = e^{-\frac{j2\pi}{N}} = \text{Twoddle factor}$$

 $\rightarrow$  FFT algorithm basically bits two properties of twiddle factor.

(i) 
$$W_N^{K+\frac{N}{2}} = 1W_N^K$$

(ii) 
$$W_N^{K+N} = W_N^K$$

- $\rightarrow$  There are two types of FFT algorithms
  - (i) Decimation in –time
  - (ii) Decimation in frequency
- → In decimation –in time algorithm, the sequence for which we need the DFT is successively divided into smaller sequences and the DFTs of these entire sequences are combined in a certain portion to obtain the required DFT of entire sequence.
- → In Decimation –in- frequency algorithm the frequency sample of the DFT are decomposed into smaller and smaller subsequences in a certain pattern.

#### 5.2 Explain direct computation of DFT.

DFT of a sequence x(n) is evaluated as follows

$$X(K) = \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi nK}{N}} , \quad 0 \le K \le N-1$$

**Digital Signal Processing** 

Since 
$$W_N = e^{-\frac{j2\pi}{N}}$$
  
 $X(K) = \sum_{n=0}^{N-1} x(n) W_N^{nk}$ ,  $0 \le K \le N-1$   
 $= \sum_{n=0}^{N-1} \{R_e[x(n)] + j I_m[x(n)]\} \{R_e[W_N^{xK}] + j I_m[W_N^{nK}]\}$   
 $= \sum_{n=0}^{N-1} \{R_e[x(n)]R_e[W_N^{xK}] - \sum_{n=0}^{N-1} I_m[x(n)]I_m[W_N^{nK}]\} + j \{\sum_{n=0}^{N-1} I_m[x(n)]R_e[W_N^{xK}] + \sum_{n=0}^{N-1} R_e[x(n)] I_m[W_N^{nK}]\}$ 

By using the above formula we can complete DFT directly . **5.3 Discuss the Radix – 2 algorithm** 

- $\rightarrow$  Radix -2 algorithm is also known as radix -2 decimation –in-time (DIT) algorithm.
- → In Radix-2 algorithm number of output points (N). can be expressed as power of 2. i.e.  $N = 2^M$  we have *M* is an integer

The N-Point DFT of 
$$x(n)$$
 is  

$$X(K) = \sum_{n=0}^{N-1} x(n) W_N^{nk}, \quad K = 0, 1, \dots, N-1$$
By separating  $x(n)$  into even and add values of  $x(n)$  we get  

$$X(K) = \sum_{\substack{n=0\\\frac{N}{2}-1}}^{N-1} x(n) W_N^{nK} + \sum_{\substack{n=0\\\frac{N}{2}-1}}^{N-1} x(n) W_N^{nK}$$

$$= \sum_{\substack{n=0\\\frac{N}{2}-1}}^{N-1} x(2n) W_N^{2nK} + \sum_{n=0}^{N-1} x(2n+1) W_N^{(2n+1)K}$$

$$= \sum_{\substack{n=0\\\frac{N}{2}-1}}^{N-1} x(2n) W_N^{2nK} + W_N^K \sum_{\substack{n=0\\\frac{N}{2}-1}}^{N-1} x(2n+1) W_N^{2nk}$$

$$= \sum_{\substack{n=0\\\frac{N}{2}-1}}^{N-1} x(2n) W_N^{2nK} + W_N^K \sum_{\substack{n=0\\n=0}}^{N-1} x(2n+1) W_N^{2nk} - - - (3)$$
Since  $x(n) = x_0(n) + x_e(n)$ 

$$= x(2n+1) + x(2n)$$

$$\& W_N^2 = \left(e^{-\frac{j2\pi}{N}}\right)^2$$

$$= e^{-\frac{j2\pi}{N}} = W_N$$

From equation (1)

$$X(K) = \sum_{\substack{n=0 \\ \frac{N}{2} - 1 \\ \frac{N}{2} -$$

For  $K \ge \frac{N}{2}$ ,  $W_N^{K+\frac{N}{2}} = -W_N^K$ Now X(K) for  $K \ge \frac{N}{2}$  is given by w X(K) for  $n \leq \frac{1}{2}$  is given by  $X(K) = X_e \left( K - \frac{N}{2} \right) - W_N^{K - \frac{N}{2}} X_0 \left( K - \frac{N}{2} \right)$ for  $K = \frac{N}{2} + \frac{N}{2} + 1, \dots, N - 1$ Steps of Radix - 2 DIT FFT . algorithm :-Twiddle factor  $W_N = e^{-\frac{j2\pi}{N}}$ (1)  $W_N^K = W_N^{K+N}$ (1)  $W_N = W_N$ (2)  $W_N^{K+(\frac{N}{2})} = -W_N^K$ (3)  $W_N^2 = W_{\frac{N}{2}}$ The competing formulas for FFT is given by  $X(K) = X_e(K) + W_N^K X_0(K)$  for  $0 \le K \le \frac{N}{2} - 1$  $= X_e\left(K - \frac{N}{2}\right) - W_N^{K - \frac{N}{2}} X_0\left(K - \frac{N}{2}\right), \overline{\frac{N}{2}} \le K \le N - 1$ For a 8 point DFT/FFT for K = 0, 1, 2, 3, 4, 5, 6, 7 the FFT values are as follows. X(0), X(1), X(2), X(3), X(4), X(5), X(6), X(7) $X(0) = x_e(0) + W_8^0 x_0(0)$  $X(4) = x_e(0) + W_8^0 x_0(0)$  $X(1) = x_e(1) + W_8^1 x_0(1)$  $X(5) = x_e(1) + W_8^1 x_0(1)$  $X(2) = x_e(2) + W_8^2 x_0(2)$  $X(6) = x_e(2) + W_8^2 x_0(2)$  $X(3) = x_e(3) + W_8^3 x_0(3)$  $X(7) = x_e(3) + W_8^3 x_0(3)$  $x_e(0) + W_8^0 x_0(0) = X(0)$  $x_e(\mathbf{0})$  $W_8^0$  $x_e(0) + W_8^0 x_0(0) = X(4)$  $x_e(\mathbf{0})$ **Butterfly Diagram**  $X_{m+1}(P) = X_m(P) + W_N^8 X_m \left(\frac{q}{k}\right)$  $x_m(\mathbf{P})^F$  $W_N^K$  $X_{m+1}(2) =$  $x_n^2(2)$  $= X_m(P) - W_N^K X_m(2)$ 

#### **Bit reversal**

Bit reversal is useful in arranging the samples for calculating DIT algorithm for N=8 For N=8  $\,$ 

| out Sample | presentation | versal | mple |
|------------|--------------|--------|------|
| 0          | 000          | 000    | 0    |

|   | 0.0.1 | 1.0.0 |   |
|---|-------|-------|---|
| 1 | 001   | 100   | 4 |
| 2 | 010   | 010   | 2 |
| 3 | 011   | 110   | 6 |
| 4 | 100   | 001   | 1 |
| 5 | 101   | 101   | 5 |
| 6 | 110   | 011   | 3 |
| 7 | 111   | 111   | 7 |

Radix – 2

Divide the number of input samples by 2 till we reach minimum two samples. O- Draw and find FFT for a 8-point sequence

$$x(n) = \{1,2,3,4,4,3,2,1\}$$
  
 $x(0) = 1, x(1) = 2, x(2) = 3, x(3) = 4, x(4) = 4, x(5) = 3, x(6) = 0,$   
 $x(7) = 1$   
As per bit reversal  
put  
 $x(0) = 1$   
 $x(4) = 4$   
 $x(2) = 3$   
 $x(6) = 2$   
 $x(1) = 2$   
 $x(1) = 2$   
 $x(5) = 3$   
 $x(6) = 0,$   
 $w_8^0$   
 $w_8^0$   
 $w_8^0$   
 $w_8^0$   
 $w_8^0$   
 $x(6) = 0,$   
 $x(7) = 1$   
 $x(4) = 4, x(5) = 3, x(6) = 0,$   
 $w_8^0$   
 $w_8^0$   
 $x(6) = 2$   
 $x(1) = 2$   
 $x(5) = 3$   
 $x(6) = 0,$   
 $w_8^0$   
 $w_8^0$   
 $x(6) = 0,$   
 $x(7) = 1$   
 $x(9) = 1,$   
 $x(1) = 2,$   
 $x(1) = 2,$   
 $x(1) = 2,$   
 $x(1) = 2,$   
 $x(3) = 0,$   
 $x(3) = 0,$   
 $x(3) = 0,$   
 $x(3) = 0,$   
 $x(1) = 1,$   
 $x(2) = 3,$   
 $x(3) = 0,$   
 $x(3) = 0,$   
 $x(2) = 3,$   
 $x(3) = 0,$   
 $x(3) = 0,$   
 $x(1) = 1,$   
 $x(2) = 1,$   
 $x(3) = 0,$   
 $x(3) = 0,$   
 $x(2) = 1,$   
 $x(3) = 0,$   
 $x(3) = 0,$ 

5.4 Introduction to digital filter

 $W^0_{\circ}$ 

= 4

x(7) = 1

- → Filter is defined as a device which rejects unwanted frequencies from the input signal and allow the desired frequencies
- $\rightarrow$  When this input signal is a discrete time sequence then this filter is a digital filter
- $\rightarrow$  A filter is a LTI discrete time system.
- $\rightarrow$  Basically, two types (i) FIR filter

(ii) IIR Filter

### (i) **FIR Filter**

This filter whose present output sample depends on the present input sample and previous input samples.

- (ii) IIR Filter
- This filter whose present output sample depends on present input, past input samples and output samples.

# 5.5 Introduction to DSP. Architecture, familiarization of different types of processor.

Ans: Digital signal processors one of two types

- 1) General purpose digital signal processor
- 2) Special purpose digital signal processor

### Introduction to DSP Architecture

DSP Architecture one of following types

- 1) Von Neumann architecture
- 2) Havard architecture
- 3) Super Havard architecture
- 1) Von Neumann Architecture :-

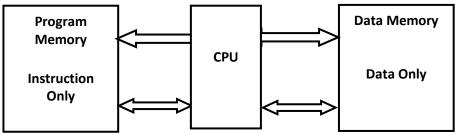
### Advantage:

- → It is cheap and requires lesser number the Havard Architecture.
- $\rightarrow$  It is simple to use

### Disadvantage:

 $\rightarrow$  It doesn't permit multiple memory access.





- → The Havard architecture physically separates memory for their instruction & data requiring dedicated buses for each of them.
- $\rightarrow$  Instructions and operands can therefore be fetched simultaneously
- → Most DSP processors are modified Havard architecture with two or three memory buses
- $\rightarrow$  It has multiport memor

