

KIIT POLYTECHNIC

LECTURE NOTES

ON

ENGG. MATH -III PART-3
 Prepared by

Satyajit Mohapatra

(Lecturer)
Department of Basic Sciences and Humanities, KIIT Polytechnic BBSR

CONTENTS

S.No	Chapter Name	Page No
1	Complex Numbers	$03-10$

CHAPTER-

COMPLEX NUMBERS

In the set of real numbers R, the equation $x^{2}+9=0$ has no solution. In order to find a solution of this type of equation, the real number set needs some extension. This can be done by introducing a new number called as imaginary number like $\sqrt{-2}, \sqrt{-9}, \sqrt{-16} \ldots$.

Definition:-

Imaginary Number (i):- The number, whose square is a negative number is called as an imaginary number. It is denoted by i and defined by $i=\sqrt{-1}$

$\underline{\text { Properties of } \boldsymbol{i}}$

$i=\sqrt{-1}, i^{2}=\sqrt{-1} \sqrt{-1}=-1, i^{3}=-i, i^{4}=1, \cdots \cdots \cdots, i^{4 n}=1, i^{4 n+1}=i, i^{4 n+2}=-1, i^{4 n+3}=-i$, for any integer n.

Definition:-

Purely Imaginary Number:- If a is any real number, then the number $a i$ is called as a purely imaginary number.

Example-
$-2 i, \quad 5 i, \quad 2.67 i, \quad 3.2 i, \frac{4}{7} i, \quad$ etc. are called as purely imaginary numbers.

Complex Numbers:

If a and b are any two real numbers, then the number $a+i b$ is called as a complex number. It is denoted by z i.e $z=a+i b, a, b \in R$. The set of all complex numbers is called as Complex number set and it is written as \boldsymbol{C}.

Conjugate of a complex number

If $z=a+i b$, be any complex number, then its conjugate, written as \bar{z} and defined by $\bar{z}=a-i b$
Or The conjugate of a complex number $z=a+i b$ will be obtained by changing the sign before i .
Example:
If $\mathrm{z}=2+9 i$, then its conjugate $\bar{z}=2-9 i$
If $\mathrm{z}=-3-5 i$, then its conjugate $\bar{z}=-3+5 i$
If $z=\frac{2}{3}-5 i$, then its conjugate $\bar{z}=\frac{2}{3}+5 i$

Geometrical Representation Of Complex Numbers:

If $z=a+i b, a, b \in R$, then this number corresponds to an ordered pair (a, b) in XY-Plane. Hence, any complex number z can be represented by a point in the two-dimensional co-ordinate plane. So, the plane representing the complex numbers is called as Complex Plane or ARGAND plane.

Modulus of a complex number

If $z=a+i b$, then its modulus, written as $|z|$ and defined by $|z|=|a+i b|=\sqrt{a^{2}+b^{2}}=$ distance between $(0,0)$ and (a, b)

Points to remember:

- In $z=a+i b$, if $b=0$, then $z=a$ will be a purely real number

And $a=0$, then $z=i b$ is purely imaginary number.

- In the complex number $z=a+i b, a$ is called as real part(written as Re part) and b is called as Imaginary part(written as Im Part).
- Re Part always lies on X -axis. Hence X -axis is called as Real axis.
- Im Part always lies on Y-axis. Hence Y-axis is called as Imaginary Axis.

Algebra of Complex Numbers

Let $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}, z_{3}=x_{3}+i y_{3}$ and β be any scalar quantity.
Then

1. $z_{1}=z_{2} \Leftrightarrow x_{1}=x_{2}$ and $y_{1}=y_{2}$
2. $z_{1} \pm z_{2}=\left(x_{1}+i y_{1}\right) \pm\left(x_{2}+i y_{2}\right)=\left(x_{1} \pm x_{2}\right)+i\left(y_{1} \pm y_{2}\right)$
3. $z_{1} z_{2}=\left(x_{1}+i y_{1}\right) \times\left(x_{2}+i y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+y_{1} x_{2}\right)=z_{2} z_{1}$
4. $\frac{z_{1}}{z_{2}}=\frac{\left(x_{1}+i y_{1}\right)}{\left(x_{2}+i y_{2}\right)}=\frac{\left(x_{1}+i y_{1}\right)\left(x_{2}-i y_{2}\right)}{\left(x_{2}+i y_{2}\right)\left(x_{2}-i y_{2}\right)}=\frac{\left(x_{1} x_{2}+y_{1} y_{2}\right)+i\left(y_{1} x_{2}-x_{1} y_{2}\right)}{x_{2}^{2}+y_{2}^{2}}$
5. $\beta z_{1}=\beta\left(x_{1}+i y_{1}\right)=\beta x_{1}+i \beta y_{1}$

Properties of complex numbers

1. $z_{1}+z_{2}=z_{2}+z_{1}$
2. $z_{1}+\left(z_{2}+z_{3}\right)=\left(z_{1}+z_{2}\right)+z_{3}$
3. $z_{1} z_{2}=z_{2} z_{1}$
4. $z_{1}\left(z_{2} z_{3}\right)=\left(z_{1} z_{2}\right) z_{3}$
5. $z_{1} \times\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3}$
6. $\quad z \bar{z}=|z|^{2}$

Formulae

1. $(\cos \alpha+i \sin \alpha) \times(\cos \beta+i \sin \beta)=\cos (\alpha+\beta)+i \sin (\alpha+\beta)$
2. $\quad(\cos \alpha+i \sin \alpha) \times(\cos \beta+i \sin \beta) \times(\cos \gamma+i \sin \gamma)=\cos (\alpha+\beta+\gamma)+i \sin (\alpha+\beta+\gamma)$ and so on

CUBE ROOTS OF UNITY $\left(\sqrt[3]{1}\right.$ or $\left.1^{\frac{1}{3}}\right)$

Let,

$$
x=\sqrt[3]{1} \text { or } 1^{\frac{1}{3}}
$$

$\Rightarrow x^{3}=1$
$\Rightarrow x^{3}-1=0$
$\Rightarrow(x-1)\left(x^{2}+x+1\right)=0$
\Rightarrow either $x-1=0$ or $x^{2}+x+1=0$
$\Rightarrow x=1$ or $x=\frac{-1 \pm \sqrt{1-4 \times 1 \times 1}}{2 \times 1}=\frac{-1 \pm i \sqrt{3}}{2}$
Hence, the cube roots of unity are $1, \omega=\frac{-1+i \sqrt{3}}{2}, \omega^{2}=\frac{-1-i \sqrt{3}}{2}$
Properties of the cube roots of unity $\left(1, \omega, \omega^{2}\right)$

1) $1+\omega+\omega^{2}=0$
2) $\omega^{3}=1$

Questions and answers:

Q.1. \quad Express $\frac{-1+2 i}{-3+i}$ in the form of $a+i b$

Ans: $\quad \frac{-1+2 i}{-3+i}=\frac{(-1+2 i)(-3-i)}{(-3+i)(-3-i)}=\frac{3-2 i^{2}+i(-6+1)}{(-3)^{2}-i^{2}}=\frac{3+2-5 i}{9+1}=\frac{5-5 i}{10}=\frac{1}{2}-i \frac{1}{2}$
Q.2. Express $\frac{3-i}{(1+i)^{2}}$ with rational denominator.

Ans: $\quad \frac{3-i}{(1+i)^{2}}=\frac{3-i}{1+i^{2}+2 i}=\frac{3-i}{2 i}=\frac{(3-i) i}{2 i^{2}}=\frac{3 i-i^{2}}{-2}=\frac{1+3 i}{-2}=-\frac{1}{2}-i \frac{3}{2}$
Q.3. Prove that: $\left(1+\omega^{2}\right)^{4}=\omega$

$$
1+\omega+\omega^{2}=0
$$

Proof: $\quad \Rightarrow 1+\omega^{2}=-\omega$

$$
\Rightarrow\left(1+\omega^{2}\right)^{4}=(-\omega)^{4}=\omega^{4}=\omega^{3} \times \omega=1 \times \omega=\omega
$$

Q.4. Prove that $\left(2+5 \omega+2 \omega^{2}\right)^{6}=729$

Proof:

$$
\begin{aligned}
\left(2+5 \omega+2 \omega^{2}\right)^{6} & =\left(2+2 \omega+2 \omega^{2}+3 \omega\right)^{6} \\
& =\left(2\left(1+\omega+\omega^{2}\right)+3 \omega\right)^{6} \\
& =\left(2 \times 0+3 \omega^{2}\right)^{6} \\
& =\left(3 \omega^{2}\right)^{6}=3^{6} \times\left(\omega^{2}\right)^{6}=729 \times \omega^{12}=729
\end{aligned}
$$

Assignments:

A. Represent the following in the ARGAND Plane:
i) 1
ii) -3 i
iii) $-2 \mathrm{i}+1$
iv) $3-2 \mathrm{i}$
v) $1+2 i$
vi) $-2-i$
B. Find the square of $-3+2 \mathrm{i}$
C. Express $\frac{2 i}{1-i}$ in the form $\mathrm{a}+\mathrm{ib}$.
D. Find the value of i^{2011}.
E. Express $\frac{3+2 i}{2-5 i}+\frac{3-2 i}{2+5 i}$ with rational denominator.
F. Find the product $(3 \sqrt{7} i-5 \sqrt{2} i) \times(3 \sqrt{2} i+5 \sqrt{2} i)$
G. Prove that: $\left(2+2 \omega+5 \omega^{2}\right)^{8}=729$
H. Prove that: $(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{4}\right)\left(1-\omega^{5}\right)=9$
I. Prove that: $\left(1-\omega+\omega^{2}\right)\left(1-\omega^{2}+\omega^{4}\right)\left(1-\omega^{4}+\omega^{2}\right)\left(1-\omega^{5}+\omega^{4}\right) \ldots$..to $2 n$ factors $=2^{2 n}$

DE-MOIVRE'S Theorem:

Statement:

$(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$,for any integer n .

Proof:

Case-1(If $\mathbf{n}>0$)

$$
\begin{aligned}
(\cos \theta+i \sin \theta)^{n} & =(\cos \theta+i \sin \theta)(\cos \theta+i \sin \theta)(\cos \theta+i \sin \theta) \ldots \ldots \text { to } n \text { factors } \\
& =\cos (\theta+\theta+\ldots \text { times })+i \sin (\theta+\theta+\ldots \text { times }) \\
& =\cos n \theta+i \sin n \theta
\end{aligned}
$$

Case-2 (If $\mathrm{n}<0$)
Let $\mathrm{n}=-\mathrm{m}$ where m is positive.

$$
\begin{aligned}
(\cos \theta+i \sin \theta)^{m} & =(\cos \theta+i \sin \theta)(\cos \theta+i \sin \theta)(\cos \theta+i \sin \theta) \ldots \ldots \text { to } m \text { factors } \\
& =\cos (\theta+\theta+\ldots m \text { times })+i \sin (\theta+\theta+\ldots m \text { times }) \\
& =\cos m \theta+i \sin m \theta \quad(\text { By case }-1)
\end{aligned}
$$

$(\cos \theta+i \sin \theta)^{n}=(\cos \theta+i \sin \theta)^{-m}$

$$
\begin{aligned}
& =\frac{1}{(\cos \theta+i \sin \theta)^{m}} \\
& =\frac{1}{\cos m \theta+i \sin m \theta} \\
& =(\cos m \theta+i \sin m \theta)^{-1} \\
& =\left[(\cos \theta+i \sin \theta)^{m}\right]^{-1} \\
& =(\cos \theta+i \sin \theta)^{-m} \\
& =(\cos \theta+i \sin \theta)^{n}
\end{aligned}
$$

Square Roots of any Complex Number:

Let us take any complex number $z=a+i b$

To find the square roots of z.i.e. $\sqrt{a+i b}$
Assume,

$$
\begin{aligned}
& \sqrt{a+i b}=x+i y \\
& \Rightarrow a+i b=(x+i y)^{2} \\
& \Rightarrow a+i b=x^{2}-y^{2}+i(2 x y) \\
& \Rightarrow a=x^{2}-y^{2}, \quad b=2 x y
\end{aligned}
$$

Solving for x and y
We have the following:

$$
\begin{aligned}
x^{2}+y^{2} & =\sqrt{\left(x^{2}-y^{2}\right)^{2}+4 x^{2} y^{2}} \\
& =\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

Now solve :
$x^{2}+y^{2}=\sqrt{a^{2}+b^{2}}$ and
$x^{2}-y^{2}=a$
to get x and y .
NOTE: To find the value of $\sqrt{a-i b}$ assume $\sqrt{a-i b}=x-i y$

Example:

Find the square roots of $3+4 i$.

Solution:

Let
$\sqrt{3+4 i}=x+i y$
$\Rightarrow 3+4 i=x^{2}-y^{2}+i(2 x y)$
$\Rightarrow x^{2}-y^{2}=3,2 x y=4$

$$
\begin{aligned}
x^{2}+y^{2} & =\sqrt{\left(x^{2}-y^{2}\right)^{2}+4 x^{2} y^{2}} \\
& =\sqrt{3^{2}+4^{2}}=5 \\
x^{2}-y^{2} & =3 \\
x^{2}+y^{2} & =5
\end{aligned}
$$

On addition:

$$
\begin{aligned}
& 2 x^{2}=8 \\
& \Rightarrow x^{2}=4 \\
& \Rightarrow x= \pm 2
\end{aligned}
$$

On subtraction:

$$
\begin{aligned}
& 2 y^{2}=2 \\
& \Rightarrow y^{2}=1 \\
& \Rightarrow y= \pm 1
\end{aligned}
$$

$\therefore \sqrt{3+4 i}= \pm(2+i)$

Example:

Given: $\cos \alpha+\cos \beta+\cos \gamma=\sin \alpha+\sin \beta+\sin \gamma=0$, show that $\cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma=3 \cos (\alpha+\beta+\gamma)$

Proof:

Let, $\cos \alpha+i \sin \alpha=x, \cos \beta+i \sin \beta=y, \cos \gamma+i \sin \gamma=z$, then

$$
x+y+z=0 \text { (verify! })
$$

Now,

$$
\begin{aligned}
& x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)=0 \\
& \Rightarrow x^{3}+y^{3}+z^{3}-3 x y z=0 \\
& \Rightarrow x^{3}+y^{3}+z^{3}=3 x y z \\
& \Rightarrow(\cos \alpha+i \sin \alpha)^{3}+(\cos \beta+i \sin \beta)^{3}+(\cos \gamma+i \sin \gamma)^{3} \\
& \quad=3(\cos \alpha+i \sin \alpha)(\cos \beta+i \sin \beta)(\cos \gamma+i \sin \gamma) \\
& \Rightarrow \cos 3 \alpha+i \sin 3 \alpha+\cos 3 \beta+i \sin 3 \beta+\cos 3 \gamma+i \sin 3 \gamma \\
& \quad=3(\cos (\alpha+\beta+\gamma)+i \sin (\alpha+\beta+\gamma)) \\
& \Rightarrow \cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma=3(\cos (\alpha+\beta+\gamma))
\end{aligned}
$$

ARGUMENT OF A COMPLEX NUMBER

If $z=x+i y, x, y \in R$, then the argument of z,written as $\arg (z)$ and defined by:
$\arg (z)=\tan ^{-1}\left(\frac{y}{x}\right)=\varphi$ and geometrically, it is the angle φ made by the line segment joining $(0,0)$ and (x, y) with the positive direction of X-axis.

Formulae for the principal argument of a complex number $z=x+i y$
Find $\tan ^{-1}\left|\frac{y}{x}\right|$
,use the formulae given below.

Quadrant	Sign of x and y	$\operatorname{Arg} \mathrm{z}$
I	$\mathrm{x}>0, \mathrm{y}>0$	$\tan ^{-1}\left\|\frac{y}{x}\right\|$
II	$\mathrm{x}<0, \mathrm{y}>0$	$\pi-\tan ^{-1}\left\|\frac{y}{x}\right\|$
III	$\mathrm{x}<0, \mathrm{y}<0$	$-\pi+\tan ^{-1}\left\|\frac{y}{x}\right\|$
IV	$\mathrm{x}>0, \mathrm{y}<0$	$-\tan ^{-1}\left\|\frac{y}{x}\right\|$

By convention, the principal value of the argument satisfies $-\pi<\operatorname{Arg}(z) \leq \pi$.

Polar Form of a Complex Number

A complex number $z=x+i y$ can be represented by a point $\mathrm{P}(x, y)$ as shown in Figure.
The length of the vector $\overrightarrow{O P}, r=|\overrightarrow{O P}|=\sqrt{x^{2}+y^{2}}$, is called the modulus of the complex number z, and it is denoted by $|z|$. Let, $\arg (z)=\varphi=\tan ^{-1}\left(\frac{y}{x}\right)$, then the polar form of z will be $z=x+i y=r(\cos \varphi+i \sin \varphi)$

Example: Express $1+\mathrm{i}$ in polar form.
Answer: $\quad \mathrm{z}=1+\mathrm{i}$, Here, $\mathrm{x}=1, \mathrm{y}=1$.
$\arg (z)=\varphi=\tan ^{-1}\left|\frac{y}{x}\right|=\tan ^{-1}\left|\frac{1}{1}\right|=\tan ^{-1} 1=\frac{\pi}{4}$ and $r=\sqrt{1^{2}+1^{2}}=\sqrt{2}$
So, $1+i=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$

Assignments:

1. Find the square roots of the following complex numbers.
a) $-5+12 i$
b) $3-4 i$
2. Given: $\cos \alpha+\cos \beta+\cos \gamma=\sin \alpha+\sin \beta+\sin \gamma=0$, show that $\sin 3 \alpha+\sin 3 \beta+\sin 3 \gamma=3 \sin (\alpha+\beta+\gamma)$.
Hints: Same as example given above.
3. Given: $\cos \alpha+\cos \beta+\cos \gamma=\sin \alpha+\sin \beta+\sin \gamma=0$, show that
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=\frac{3}{2}=\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$.

Hints: Same as example given above with

$$
\begin{aligned}
& (x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x=x^{2}+y^{2}+z^{2}+2 x y z\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \\
& \Rightarrow x^{2}+y^{2}+z^{2}+2 x y z\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0\left(\text { Since } x+y+z=0=x^{-1}+y^{-1}+z^{-1}\right) \\
& \Rightarrow x^{2}+y^{2}+z^{2}=0
\end{aligned}
$$

4. If $x+\frac{1}{x}=2 \cos \theta$, prove that $x^{n}+\frac{1}{x^{n}}=2 \cos n \theta$
5. For any positive integer n , show that,
a) $(1+i)^{n}+(1-i)^{n}=2^{\frac{n+2}{2}} \cos \frac{n \pi}{4}$
b) $\quad(1+i \sqrt{3})^{n}+(1-i \sqrt{3})^{n}=2^{n+1} \cos \frac{n \pi}{3}$
6. If $x+\frac{1}{x}=2 \cos \alpha, x+\frac{1}{x}=2 \cos \beta, x+\frac{1}{x}=2 \cos \gamma$, prove that $x y z+\frac{1}{x y z}=2 \cos (\alpha+\beta+\gamma)$
7. Find the argument of the complex numbers:
a) $1-i \sqrt{3}$
b) $1+i \sqrt{3}$
8. Express $1+i \sqrt{3}$ in polar form.

Reference Books:

Elements of Mathematics Vol. -1 (Odisha State Bureau of Text Book preparation \& Production)

