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Magnetic Circuits 

Introduction: Magnetic flux lines always form closed loops. The closed 

path followed by the flux lines is called a magnetic circuit. Thus, a 

magnetic circuit provides a path for magnetic flux, just as an electric 

circuit provides a path for the flow of electric current. In general, the 

term magnetic circuit applies to any closed path in space, but in the 

analysis of electro-mechanical and electronic system this term is 

specifically used for circuits containing a major portion of ferromagnetic 

materials. The study of magnetic circuit concepts is essential in the 

design, analysis and application of electromagnetic devices like 

transformers, rotating machines, electromagnetic relays etc. 

Magneto motive Force (M.M.F) : 
 

Flux is produced round any current – carrying coil. In order to produce 

the required flux density, the coil should have the correct number of 

turns. The product of the current and the number of turns is defined as the 

coil magneto motive force (m.m.f). 

If I = Current through the coil (A) 

N = Number of turns in the coil. 

Magneto motive force = Current x turns 
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So M.M.F = I X N 

 
The unit of M.M.F. is ampere–turn (AT) but it is taken as 

Ampere(A) since Nhas no dimensions. 

Magnetic Field Intensity 
 

Magnetic Field Intensity is defined as the magneto-motive force per unit 

length of themagnetic flux path. Its symbol is H. 
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Magnetic field Intensity (H) = Magneto motive force 

Mean length of the magnetic path 
 

 H = F 
 

I .N . 
A/m

 

l l 

 
Where l is the mean length of the magnetic circuit in meters. Magnetic field 

intensity is also called magnetic field strength or magnetizing force. 

Permeability:- 

Every substance possesses a certain power of conducting magnetic lines 

of force. For example, iron is better conductor for magnetic lines of force than 

air (vacuum). Permeability of a material () is its conducting power for 

magnetic lines of force. It is the ratio of the flux density. (B) Produced in a 

Material to the magnetic field strength (H) i.e.  = B 
H 

Reluctance: 

Reluctance (s) is akin to resistance (which limits the electric Current). 

Flux in a magnetic circuit is limited by reluctance. Thus reluctance(s) is a 

measure of the opposition offered by a magnetic circuit to the setting up of the 

flux. 

Reluctance is the ratio of magneto motive force to the flux. Thus 

 
S  Mmf 





Its unit is ampere turns per weber (or AT/wb) 

 
Permeance:- 

 

The reciprocal of reluctance is called the permeance (symbol A). 

 
Permeance (A) = 1/S wb/AT 

Turn T has no unit. 

Hence permeance is expressed in wb/A or Henerys(H). 
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Electric Field versus Magnetic Field. 

 
Similarities 

 

Electric Field 

1) Flow of Current (I) 

Magnetic Field 

1) Flow of flux () 
 

2) Emf is the cause of 

flow of current 

2) MMf is the cause of 

flow of flux 
 

3) Resistance offered 

to the flow of 

Current, is called 

resistance (R) 

Conductance 
4) 

(  )  
1

 

R 

5) Current density is 

amperes per square 

meter. 

6) Current (I) - EMF 
R 

3) Resistance offered to 

the flow of flux, is 

called reluctance (S) 

 
 

4) Permitivity() 





5) Flux density is number 

of lines per square 

meter. 

 

6) Flux ()  
MMF 

S 
 

Dissimilarities 

 

1) Current actually flows 

in an electric Circuit. 

1) Flux does not actually 

flow in a magnetic 

circuit. 
 

2) Energy is needed as 

long as current flows 

2) Energy is initially 

needed to create the 

magnetic flux, but not 

1 
S 
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to maintain it. 
 

3) Conductance is 

constant and 

independent of current 

strength at a particular 

temperature. 

3) Permeability (or 

magnetic 

conductance ) 

depends on the total 

flux for a particular 

temperature. 

 

 

 

B.H. Curve: 

Place a piece of an unmagnetised iron bar AB within the field of a 

solenoid to magnetise it. The field H produced by the solenoid, is called 

magnetising field, whose value can be altered (increased or decreased) by 

changing (increasing or decreasing) the current through the solenoid. If we 

increase slowly the value of magnetic field (H) from zero to maximum value, 

the value of flux density (B) varies along 1 to 2 as shown in the figure and the 

magnetic materials (i.e iron bar) finally attains the maximum value of flux 

density (Bm) at point 2 and thus becomes magnetically saturated. 

 
 

Fig. 2.1 

Now if value of H is decreased slowly (by decreasing the current in the 

solenoid) the corresponding value of flux density (B) does not decreases along 

2-1 but decreases some what less rapidly along 2 to 3. Consequently during the 

reversal of magnetization, the value of B is not zero, but is '13' at H= 0. In other 
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wards, during the period of removal of magnetization force (H), the iron bar is 

not completely demagnetized. 

 
In order to demagnetise the iron bar completely, we have to supply the 

demagnetisastion force (H) in the opposite direction (i.e. by reserving the 

direction of current in the solenoid). The value of B is reduced to zero at point 

4, when H='14'. This value of H required to clear off the residual magnetisation, 

is known as coercive force i.e. the tenacity with which the material holds to its 

magnetism. 

 
If after obtaining zero value of magnetism, the value of H is made more 

negative, the iron bar again reaches, finally a state of magnetic saturation at the 

point 5, which represents negative saturation. Now if the value of H is increased 

from negative saturation (= '45') to positive saturation ( = '12') a curve '5,6,7,2' 

is obtained. The closed loop "2,3,4,5,6,7,2" thus represents one complete cycle 

of magnetisation and is known as hysteresis loop. 
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CIRCUIT ELEMENTS AND ANALYSIS 

Different terms are defined below: 

1. Circuit: A circuit is a closed conducting path through which an electric 

current either flow or is intended flow 

2. Network: A combination of various electric elements, connected in any 

manner.Whatsoever, is called an electric network 

3. Node: it is an equipotential point at which two or more circuit elements are 

joined. 

4. Junction: it is that point of a network where three or more circuit elements are 

joined. 

5. Branch: it is a part of a network which lies between junction points. 

6. Loop: It is a closed path in a circuit in which no element or node is 

accounted more thanonce. 

7. Mesh: It is a loop that contains no other loop within it. 

Example 3.1 In this circuit configuration of figure 3.1, obtain the no. of i) circuit 

elements ii)nodes iii) junction points iv) branches and v) meshes. 

R5 

 

 

 

 
R6 

 

 

 

 

 

 

 

 
 

 

V1 R7 
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R3 R9 V2 
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Solution: i) no. of circuit elements = 12 (9 resistors + 3 voltage sources) 

ii) no. of nodes =10 (a, b, c, d, e, f, g, h, k, p) 

iii) no. of junction points =3 (b, e, h) 

iv) no. of branches = 5 (bcde, be, bh, befgh, bakh) 

v) no. of meshes = 3 (abhk, bcde, befh) 

MESH ANALYSIS 

Mesh and nodal analysis are two basic important techniques used in 

finding solutions for a network. The suitability of either mesh or nodal analysis 

to a particular problem depends mainly on the number of voltage sources or 

current sources .If a network has a large number of voltage sources, it is useful 

to use mesh analysis; as this analysis requires that all the sources in a circuit be 

voltage sources. Therefore, if there are any current sources in a circuit they are 

to be converted into equivalent voltage sources,if, on the other hand, the 

network hasmore current sources,nodal analysis is more useful. 

Mesh analysis is applicable only for planar networks. For non-planar circuits 

mesh analysis is not applicable .A circuit is said to be planar, if it can be drawn 

on a plane surface without crossovers. A non-planar circuit cannot be drawn 

on a plane surface without acrossover. 

Figure 3.2 (a) is a planar circuit. Figure 3.2 (b) is a non-planar circuit and fig. 

3.2 (c) is a planar circuit which looks like a non-planar circuit. It has already 

been discussed that a loop is a closed path. A mesh is defined as a loop which 

does not contain any other loops within it. To apply mesh analysis, our first step 

is to check whether the circuit is planar or not and the second is to select mesh 

currents. Finally, writing Kirchhoff‘s voltage law equations in terms of 

unknowns and solving them leads to the final solution. 
 
 

 
 

 

(a) (b) (c) 
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Figure 3.2 
 

Observation of the Fig.3.2 indicates that there are two loops abefa,and 

bcdeb in the network .Let us assume loop currents I1 and I2with directions 

as indicated in the figure. 
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Considering the loop abefa alone, we observe that current I1 is passing through 

R1, and (I1-I2)is passing through R2. By applying Kirchhoff’s voltage law, we can 

write 
 

Vs. =I1R1+R2(I1-I2) (3.1) 
 

R1 R3 

 

 
 

Vs 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3 

 

Similarly, if we consider the second mesh bcdeb, the current I2 is passing 

through R3 and R4, and (I2 – I1) is passing through R2. By applying Kirchhoff’s 

voltage law around the second mesh, we have 

R2 (I2-I1) + R3I2 +R4I2 = 0 (3.2) 

 

By rearranging the above equations,the corresponding mesh current 

equations areI1 (R1+R2) - I2R2 =Vs. 

-I1R2 +(R2+R3+R4) I2=0 (3.3) 
 

 

 

By solving the above equations, we can find the currents I1 and I2,.If we 

observe Fig.3.3, the circuit consists of five branches and four nodes, including 

the reference node.The number of mesh currents is equal to the number of mesh 

equations. 

And the number of equations=branches-(nodes-1).in Fig.3.3, the required 

number of mesh current would be 5-(4-1)=2. 

a b c 

R2 

R4 

± 
I1 I2 

f e d 
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In general we have B number of branches and N number of nodes 

including thereference node than number of linearly independent mesh equations 

M=B-(N-1). 

 

 

 
Example 3.2 Write the mesh 

 

 

current equations in the circuit shown 10 V 

 

 

in fig 3.4 and determine the currents. 

 

 

Figure 3.4 
 

Solution: Assume two mesh currents in the direction as indicated in fig. 

3.5. The mesh current equations are 

 

 

5 Ω 
 
 
 

10 V I1 

 

2 Ω 

I2 10 Ω 
 

50V 
 

 
 

Figure 3.5 
 

5I1 + 2(I1-I2) = 10 
 

1012 + 2(12-11) + 50= 0 (3.4) 
 

We can rearrange the above equations as 

7I1 -2I2 =10 

-2I1+12I2 = -50 (3.5) 
 

By solving the above equations, we have I1= 0.25 A, and I2 = -4.125 

5Ω 10Ω 

2Ω 

50v 
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Here the current in the second mesh I2, is negative; that is the actual current I2 flows opposite 

to the assumed direction of current in the circuit of fig .3.5. 

Example 3.3 Determine the mesh current I1 in the circuit shown in fig.3.6. 

 

 

10 Ω 2 Ω    
 

 

 

5 Ω I2 + 10 V 
 

I1 1 Ω 
 

50 V ‐ 

 

3 Ω 5 V 
 

I3 

 
 
 

Figure 3.6 

 

 

Solution: From the circuit, we can from the following three mesh equations 

10I1+5(I1+I2) +3(I1-I3) = 50 (3.6) 

2I2 +5(I2+I1) +1(I2+I3) = 10 (3.7) 
 

3(I3-I1) +1(I3+I2) = -5 (3.8) 
 

Rearranging the above equations we get 
 

18I1+5I2-3I3=50 (3.9) 
 

5I1+8I2 + I3=10 (3.10) 
 

-3I1 + I2+ 4I3=-5 (3.11) 
 

According to the Cramer’s rule 
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

 

 



   





 50 5  3
 

10 8 1 

I1= 
 5 1 4  

= 
1175 

 18 5  3 356 

 5 8 1 
 3 1 4 




 


Or I1= 3.3 A Similarly, 

 18 50  3
 

5 10 1 



 


I = 
 3  5 4  

= 
 355 

2     18 5 
 5 8 

 3 



1 
356 

 
 3 1 4 






Or I2=-0.997A (3.12) 

 18 5 50 
 

5 8 10 

I = 
 3 1  5 525 

   
3  

18 5  3
 

356 
 5 8 1 
 3 1 4 




 


Or I3=1.47A (3.13) 

I1=3.3A, I2=-0.997A, I3=1.47A 

MESH EQUATIONS BY INSPECTION METHOD The mesh equations for a general planar network can 

be writtenby inspection without going through the detailed steps. Consider a three mesh networks as shown in 

figure 3.7 

 

The loop equation are I1R1+ R2(I1-I2) =V1 R1 R3 

R4 

 

 

 
 

 

R5 

 

 

 

 

 

Figure 3.7 

V1 

I1 R2 I2 V2 I3 
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R2( I2-I1)+I2R3= -V2 3.14 

R4I3+R5I3=V2 3.15 

Reordering the above equations, we have 

(R1+R2)I1-R2I2=V1 3.16 

-R2I1+(R2+R3)I2=-V2 3.17 

(R4+R5)I3=V2 3.18 

The general mesh equations for three mesh resistive network can be written as 

R11I1  R12I2  R13I3= Va 3.19 

 R21I1+R22I2  R23I3= Vb 3.20 

 R31I1  R32I2+R33I3= Vc 3.21 

By comparing the equations 3.16, 3.17 and 3.18 with equations 3.19, 3.20 and 3.21 

respectively, the following observations can be taken into account. 

1. The self-resistance in each mesh 

2. The mutual resistances between all pairs of meshes and 

3. The algebraic sum of the voltages in each mesh. 

The self-resistance of loop 1, R11=R1+R2, is the sum of the resistances through which I1 

passes. 

The mutual resistance of loop 1, R12= -R2, is the sum of the resistances common to loop 

currents I1 and I2. If the directions of the currents passing through the common resistances are 

the same, the mutual resistance will have a positive sign; and if the directions of the currents 

passing through the common resistance are opposite then the mutual resistance will have a 

negative sign. 

Va=V1 is the voltage which drives the loop 1. Here the positive sign is used if 

the direction of the currents is the same as the direction of the source. If the current 

direction is opposite to the direction of the source, then the negative sign is used. 

Similarly R22=R2+R3 and R33=R4+R5 are the self-resistances of loops 2 and 3 

respectively. The mutual resistances R13=0, R21= -R2, R23=0, R31=0, R32=0 are the 

sums of the resistances common to the mesh currents indicated in their subscripts. 

Vb= -V2, Vc= V2 are the sum of the voltages driving their   respective loops. 



KIIT POLYTECHNIC 

CIRCUIT AND NETWORK THEORY 16 

 

 

1 
3Ω 

+ 

I1 

 2Ω  

I 

5V 

_ + 

6Ω 

- 

+ -20V 

 

 

 

 

Example 3.4 writes the mesh equation for the circuit shown in fig. 3.8 
 

 

 

 

 

 

5Ω 
 
 
 
 

10V - 4Ω 
 
 
 
 
 
 

 

Figure 3.8 
 

Solution : the general equation for three mesh equation are 

R11I1  R12I2  R13I3=Va (3.22) 

 R21I1+R22I2  R23I3=Vb (3.23) 

 R31I1  R32I2+R33I3=Vc (3.24) 

Consider equation 3.22 
 

R11=self resistance of loop 1=(1Ω+ 3 Ω +6 Ω) =10 Ω 
 

R12= the mutual resistance common to loop 1 and loop 2 = -3 Ω 
 

Here the negative sign indicates that the currents are in opposite direction . 

R13= the mutual resistance common to loop 1 & 3= -6 Ω 

Va= +10 V, the voltage the driving the loop 1. 
 

Here he positive sign indicates the loop current I1 is in the same direction as the 

source element. 

Therefore equation 3.22 can be written as 



KIIT POLYTECHNIC 

CIRCUIT AND NETWORK THEORY 17 

 

 

 

10 I1- 3I2-6I3= 10 V (3.25) 
 

Consider Eq. 3.23 
 

R21= the mutual resistance common to loop 1 and loop 2 = -3 Ω 
 

R22= self resistance of loop 2=(3Ω+ 2 Ω +5 Ω) =10 Ω 

R23=0, there is no common resistance between loop 2 and 3. 

Vb = -5 V, the voltage driving the loop 2. 

Therefore Eq. 3.23 can be written as 

-3I1 + 10I2= -5V (3.26) 

Consider Eq. 3.24 

R31= the mutual resistance common to loop 1 and loop 3 = -6 Ω 

R32= the mutual resistance common to loop 3 and loop 2 = 0 

R33= self resistance of loop 3=(6Ω+ 4 Ω) =10 Ω 

Vc= the algebraic sum of the voltage driving loop 3 

=(5 V+20V)=25 V (3.27) 

Therefore, Eq3.24can be written as -6I1 + 10I3= 25V 

-6I1-3I2-6I3= 10V 

-3I1+10I2=-5V 

-6I1+10I3=25V 
 

SUPERMESH ANALYSIS 
 

Suppose any of the branches in the network has a current source, then it is slightly difficult to 

apply mesh analysis straight forward because first we should assume an unknown voltage 

across the current source, writing mesh equation as before, and then relate the source current 

to the assigned mesh currents. This is generally a difficult approach. On way to overcome this 

difficulty is by applying the supermesh technique. Here we have to choose the kind of 

supermesh. A supermesh is constituted by two adjacent loops that have a common current 

source. As an example, consider the network shown in the figure 3.9. 

 

 

 

 

 
 

R4 

  R2  

+ V I1 I2 R3 I3 

- 

1 I 2 3 

Figure 3.9 
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a b I I 

I 10 Ω I2 

2 A f 

+ I1 3 Ω 

I3 

5Ω 

d 

 

Here the current source I is in the common boundary for the two meshes 1 and 2. This current 

source creates a supermesh, which is nothing but a combination of meshes 1 and 2. 

R1I1 + R3(I2-I3)=V 

Or R1I1 + R3I2 - R4I3= V 

Considering mesh 3, we have 

R3(I3-I2)+ R4I3=0 

Finally the current I from current source is equal to the difference between two mesh currents 

i.e. 

I1-I2=I 
 

we have thus formed three mesh equations which we can solve for the three unknown 

currents in the network. 

Example 3.5. Determine the current in the 5Ω resistor in the network given in Fig. 3.10 
 

 

 

e 
 

2Ω 
 

 
 

50 v 1 Ω 
 

 
 

 

 

 

 

Figure 3.10 
 

Solution: - From the first mesh, i.e. abcda, we have 
 

50 = 10(I1-I2) + 5(I1-I3) 
 

Or 15I1-10I2 -5I3 =50 (3.28) 

 
 

From the second and third meshes. we can form a super mesh 
 

10(I2-I1)+2I2 +I3+5(I3-I1)=0 
 

Or -15I1+12I2 +6I3 =0 (3.29) 
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The current source is equal to the difference between II and III mesh currents 

i.e. I2-I3 = 2A (3.30) 

Solving 3.28.,3.29 and 3.30. we have 
 

I1 =19.99A,I2= 17.33 A, and I3 = 15.33 A 
 

The current in the 5Ω resistor =I1 -I3 

 

=19.99 -15.33=4.66A 
 

The current in the 5Ω resistor is 4.66A. 
 

Example 3.6. Write the mesh equations for the circuit shown in fig. 3.11 and determine the 

currents, I1, I2 and I3. 

 

 

 

 

 

 

 

1Ω 

 

 

 

 

 
Figure 3.11 

 

 

Solution ; In fig 3.11, the current source lies on the perimeter of the circuit, and the 

first mesh is ignored. Kirchhoff‘s voltage law is applied only for second and third meshes . 

From the second mesh, we have 

3(I2-I1)+2(I2-I3)+10 =0 

Or -3I1 +5I2-2I3 = -10 (3.31) 

 
 

From the third mesh, we have 

I3 + 2 (I3 -I2) =10 

Or -2I2+3I3 =10 (3.32) 

10V 

I1 

I2 I3 

10 A 3Ω 

2Ω 

I II III 
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R2 R4 

R1 R3 

1 2 

R1 

 

From the first mesh, I1 =10A (3.33) 

From the abovethree equations, we get 

I1=10A, I2 =7.27, I3 =8.18A 

 

 

NODALANALYSIS 
 

In the chapter I we discussed simple circuits containing only two nodes, including the 

reference node. In general, in a N node circuit, one of the nodes is chosen as the reference or datum 

node, then it is possible to write N -1nodal equations by assuming N-1 node voltages. For 

example,a10 node circuit requires nine unknown voltages and nine equations. Each node in a circuit 

can be assigned a number or a letter. The node voltage is the voltage of a given node with respect to 

one particular node, called the reference node, which we assume at zero potential. In the circuit shown 

in fig. 3.12, node 3 is assumed as the    Reference node. The voltage at node 1 is the voltage at that 

node with respect to node 3. Similarly, the voltage at node 2 is the voltage at that node with respect to 

node 3. Applying Kirchhoff’s current law at node 1, the current entering is the current leaving (See 

Fig.3.13) 
 

1 2 

 

 

 

 

 
I1 R5 

 

 

 

 
3 Figure 3.12 

R2 

 

I1 

 

 

 

 

 
Figure 3.13 

I1= V1/R1 + (V1-V2)/R2 
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10Ω 2Ω 

3Ω 

5Ω 5A 1Ω 

 

Where V1 and V2 are the voltages at node 1 and 2, respectively. Similarly, at node 

2.the current entering is equal to the current leaving as shown in fig. 3.14 

 

R2 R4 

 

 
 

R3 R5 

 

Figure 3.14 
 

 

 

 

(V2-V1)/R2 + V2/R3 + V2/(R4+R5) =0 
 

Rearranging the above equations, we have 

V1[1/R1+1/R2]-V2(1/R2)= I1 

-V1(1/R2) + V2[1/R2+1/R3+1/(R4+R5)]=0 
 

From the above equations we can find the voltages at each node. 

Example 3.7 Determine the voltages at each node for the circuit shown in fig 3.15 

3Ω 
 

 

 

 

 

 

 

 

10 V 6Ω 
 

 

Figure 3.15 

 

Solution : At node 1, assuming that all currents are leaving, we have 

(V1-10)/10 + (V1-V2)/3 +V1/5 + (V1-V2)/3 =0 
Or V1[1/10 +1/3 +1/5 + 1/3 ] - V2[ 1/3 + 1/3 ] = 1 

0.96V1-0.66V2 = 1 (3.36) 
At node 2, assuming that all currents are leaving except the current from current source, we 

have 
(V2-V1)/3+ (V2-V1)/3+ (V2-V3)/2 = 5 
-V1[2/3]+V2[1/3 +1/3 + 1/2]-V3(1/2) =5 
-0.66V1+1.16V2-0.5V3= 5 (3.37) 
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















 0 



 0 





 0 

 

At node 3 assuming all currents are leaving, we have 

(V3-V2)/2 + V3/1 + V3/6 =0 

-0.5V2 + 1.66V3=0 (3.38) 

Applying Cramer’s rule we get 
 

 1  0.66 0 
 

5 1.16  0.5 



V = 
 0 

 0.5 1.66 
 

= 
7.154 

 8.06 

1  
0.96  0.66 0 







0.887 
 0.66 1.16  0.5
 

 0.5 1.66 



Similarly, 

 0.96 1 
 

 0.66 5 

V = 
 0 0 

 
0 

 0.5 
1.66 

 



 

= 
9.06  10.2 

 

2     0.96  0.66 0 

 0.887 

 0.66 1.16  0.5
 

 0.5 1.66 



 0.96 
 

 0.66 
0 

 0.66 1 

1.16 5 

V =  0.5  0  
 

2.73  3.07 
 

 

3 

 
0.96  0.66 0 


 0.887 

 0.66 1.16  0.5
 

 0.5 1.66 





NODAL EQUATIONS BY INSPECTION METHOD The nodal equations for a general planar 

network can also be written by inspection without going through the detailed steps. Consider a three 

node resistive network, including the reference node, as shown in fig 3.16 

R1 R3 R5 

 

 

 
 

V1 

V2 

 

 

 

 
 

 

 

Figure 3.16 

a b 

   

R2 R4    

c 
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In fig. 3.16 the points a and b are the actual nodes and c is the reference node. 

Now consider the nodes a and b separately as shown in fig 3.17(a) and (b) 

 

R1   Va R3 R3 Vb R5 

    Vb Va 

 

 

V1 

 

 

 

 

 

 

 

Figure 3.17 
 

In fig 3.17 (a), according to Kirchhoff’s current law we have 

I1+I2+I3=0 

(Va-V1)/R1 +Va/R2+ (Va-Vb)/R3= 0 

 

 

 
(3.39) 

 

In fig 3.17 (b) , if we apply Kirchhoff’s current law  

I4+ I5= I3 

(Vb-Va)/R3 + Vb/R4+(Vb-V2)/R5=0 

 
 

(3.40) 

Rearranging the above equations we get 
 

(1/R1+1/R2+1/R3)Va-(1/R3)Vb=(1/R1)V1 (3.41) 

(-1/R3)Va+ (1/R3+1/R4+1/R5)Vb=V2/R5 (3.42) 

In general, the above equation can be written as 
 

GaaVa + GabVb=I1 
 

(3.43) 

GbaVa + GbbVb=I2 
 (3.44) 

 

By comparing Eqs 3.41,3.42 and Eqs 3.43, 3.44 we have the self conductance at node 

a, Gaa=(1/R1 + 1/R2 + 1/R3) is the sum of the conductances connected to node a. Similarly, 

Gbb= (1/R3 + 1/R4 +1/R5) is the sum of the conductances connected to node b. Gab=(-1/R3) is 

the sum of the mutual conductances connected to node a and node b. Here all the mutual 

conductances have negative signs. Similarly, Gba= (-1/R3) is also a mutual conductance 

connected between nodes b and a. I1 and I2 are the sum of the source currents at node a and 

node b, respectively. The current which drives into the node has positive sign, while the 
current that drives away from the node has negative sign. 

I1 I5 I3 

R2    

(a) 

I3 

R4 I4 

I5 

V2 

(b) 
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Example 3.8 for the circuit shown in the figure 3.18 write the node equations by the 

inspection method. 

 

 

 

 
4Ω 

 

 

 

 

 

 

 

 
Fig 3.18 

 

Solution:- 

 

The general equations are 

 

GaaVa+GabVb=I1 (3.45) 
 

GbaVa + GbbVb=I2 (3.46) 

Consider equation 3.45 

 
Gaa=(1+ 1/2 +1/3) mho. The self conductance at node a is the sum of the conductances 

connected to node a. 

 

Gbb = (1/6 + 1/5 + 1/3) mho the self conductance at node b is the sum of conductances 

connected to node b. 

 

Gab =-(1/3) mho, the mutual conductances between nodes  a and b is the sum of the 

conductances connected between node a and b. 

 

Similarly Gba = -(1/3), the sum of the mutual conductances between nodes b and a. 

I1=10/1 =10 A, the source current at node a, 

a b 

1 Ω 3Ω 2Ω 

5Ω 

10V 2Ω 

2 V 5 V 
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1 2 3 

R2 VX 

R1 R3 R4 

VY 

 

I2=(2/5 + 5/6) = 1.23A, the source current at node b. 

Therefore, the nodal equations are 

1.83Va-0.33Vb=10 (3.47) 

 
-0.33Va+0.7Vb= 1.23 (3.48) 

SUPERNODE ANALYSIS 

 

Suppose any of the branches in the network has a voltage source, then it is slightly difficult to 

apply nodal analysis. One way to overcome this difficulty is to apply the supernode 

technique. In this method, the two adjacent nodes that are connected by a voltage source are 

reduced to a single node and then the equations are formed by applying Kirchhoff’s current 

law as usual. This is explained with the help of fig. 3.19 

V1 V2 + _ V3 

 

 

 

 

I R5 

 

 

 

 

4 

 

FIG 3.19 

 

 

 

 

It is clear from the fig.3.19, that node 4 is the reference node. Applying Kirchhoff’s current 

law at node 1, we get 

 

I=(V1/R1 ) + (V1-V2)/R2 

 

Due to the presence of voltage source Vχ in between nodes 2 and 3 , it is slightly 

difficult to find out the current. The supernode technique can be conveniently applied in this 

case. 

Accordingly, we can write the combined equation for nodes 2 and 3 as under. 
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(V2-V1)/R2 + V2/R3 + (V3-Vy)/R4 +V3/R5= 0 
 

The other equation is 

V2-V3 =Vx 

From the above three equations, we can find the three unknown voltages. 
 

 

 

 
 

Example 3.9 Determine the current in the 5 Ω resistor for the circuit shown in fig. 

3.20 

2Ω 

 

 

 

 
2Ω 

 

 

fig. 3.20 
 

 

 

 

 

Solution. At node 1 
 

10= V1/3 + (V1-V2)/2 
 

Or V1[1/3 +1/2]-(V2/2)-10=0 
 

0.83V1-0.5V2-10 = 0 (3.49) 

 
 

At node 2 and 3, the supernode equation is 

 
(V2-V1)/2 + V2/1 + (V3-10)/5 +V3/2 = 0 

 
Or –V1/2 +V2[(1/2)+1]+ V3[1/5 + 1/2]=2 

 
Or -0.5V1+ 1.5V2+0.7V3-2=0 (2.50) 

 
The voltage between nodes 2 and 3 is given by 

 
V2-V3=20 (3.51) 

V1 V2 +_--- - V3 

20 V 

1Ω 5Ω 

10 A3Ω 

10 V 
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   a  

R1 

 

The current in 5Ω resistor I5 =(V3-10)/5 

Solving equation 3.49, 3.50 and 3.51, we obtain 

V3 =-8.42 V 
 

 Currents I5=(-8.42-10)/5 = -3.68 A (current towards node 3 ) i.e the current 

flows towards node 3. 

 

 
SOURCE TRANSFORMATION TECHNIQUE 

In solving networks to find solutions one may have to deal with energy sources. It has 

already been discussed in chapter 1 that basically, energy sources are either voltage sources 

or current sources. Sometimes it is necessary to convert a voltage source to a current source 

or vice-versa. Any practical voltage source consists of an ideal voltage source in series with 

an internal resistance. Similarly, a practical current source consists of an ideal current source 

in parallel with an internal resistance as shown in figure3.21. Rv and Ri represent the internal 

resistances of the voltage source Vs , and current source Is ,respectively. 
 

 

RV 

    a 
 
 

 

 

 

VS IS 

 

 

 

 

b fig. 3.21 b 
 

 

Any source, be it a current source or a voltage source, drives current through its load 

resistance, and the magnitude of the current depends on the value of the load resistance. Fig 

3.22 represents a practical voltage source and a practical current source connected to the 

same load resistance RL. 

 

 
RV 



KIIT POLYTECHNIC 

CIRCUIT AND NETWORK THEORY 28 

 

 

I IL 

R1 

 

  a  
 

 

 

 

RL IS RL 

 

 

 

 

 
b b 

(a) (b) 

Figure 3.22 

From fig 3.22 (a) the load voltage can be calculated by using Kirchhoff’s voltage law as 

Vab=Vs-ILRv 

The open circuit voltage Voc=Vs 

The short circuit current Isc= 
Vs

 

Rv 

 
from fig 3.22 (b) 

 

IL=Is-I=Is-(Vab/R1) 
 

The open circuit voltage Voc= IsR1 

The short circuit current Isc=Is 

The above two sources are said to be equal, if they produce equal amounts of current 

and voltage when they are connected to identical load resistances. Therefore, by equating the 

open circuit votages and short circuit currents of the above two sources we obtain 

Voc=IsR1=Vs 

Isc=Is=Vs/Rv 

It follows that 

R1=Rv=Rs; Vs=IsRs 

where Rs is the internal resistance of the voltage or current source. Therefore, any 

practical voltage source, having an ideal voltage Vs and internal series resistance Rs can be 

replaced by a current source Is=Vs/Rs in parallel with an internal resistance Rs. The reverse 

  a  

VS IL 
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tansformation is also possible. Thus, a practical current source in parallel with an internal 

resistance Rs can be replaced by a voltage source Vs=IsRs in series with an internal resistance 

Rs. 

Example 3.10 Determine the equivalent voltage source for the current source shown in fig 

3.23 

A 

 

 
5 A 

 

 

 

 

 

B 
 

Figure 3.23 
 

Solution: The voltage across terminals A and B is equal to 25 V. since the internal resistance 

for the current source is 5 Ω, the internal resistance of the voltage source is also 5 Ω. The 

equivalent voltage source is shown in fig. 3.24. 

5Ω 

 

 

 

 
25 V 

 

 

 

 

 

 
Fig 3.24 

 
Example 3.11 Determine the equivalent current source for the voltage source shown in fig. 3.25 

 

 
 

 

 

50 V 

5Ω 

A 

B 

A 

30 Ω 
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30Ω 

 

 

 
 

 

Solution : the short circuit current at terminals A and B is equal to 

I= 50/30 = 1.66 A 

A 
 

1.66 A 
 

 
 

B 
 

Fig 3.26 
 

Since the internal resistance for the voltage source is 30Ω, the internal resistance of 

the current source is also 30 Ω. The equivalent current source is shown in fig. 3.26 
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NETWORK THEOREMS 

 
Before start the theorem we should know the basic terms of the network. 

 
Circuit: It is the combination of electrical elements through which current 

passes is called circuit. 

Network: It is the combination of circuits and elements is called network. 

Unilateral: It is the circuit whose parameter and characteristics change with 

change in the direction of the supply application. 

Bilateral: It is the circuit whose parameter and characteristics do not change 

with the supply in either side of the network. 

Node: It is the inter connection point of two or more than two elements is 

called node. 

Branch: It is the interconnection point of three or more than three elements 

iscalled branch. 

Loop: It is a complete closed path in a circuit and no element or node is 

takenmore than once. 

Super-Position Theorem: 

Statement :'' It states that in a network of linear resistances containing more than 

one source the current which flows at any point is the sum of all the currents 

which would flow at that point if each source were considered separately   and 

all other sources replaced for time being leaving its internal resistances if any''. 

Explanation: 

Considering E1 source 

 

Step 1. 

R2&r are in series and parallel with R3 and again series with R1 
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I  21 1 1 

1 1 

2 2 

 R 

 

(R2+r2) || R3 

 
(R2  r2 )R3 

 m 
R2  r2  R3 

Rt1  m  R1  r1 

I  
E1

 
 

1 Rt1 

 

(say) 

I  I1  R3 
 

R2  r2  R3 

I  
I1 (R2  r2 ) 

R2  r2  R3 

Step – 2 

Considering E2 source,R1&r2 are series and R3 parallel and R2 in series 

 

(R1+r1) || R3 

 
(R1  r1 )R3 

 n 
R1  r1  R3 

Rt2  n  R2  r2 

I  
E2

 
 

2 Rt2 

/ I (R  r ) 
 

 3 R  r  R 
1 1 3 

 

(say) 

I /  I2  R3 
 

 1 R  r  R 
1 1 3 

Step – 3 

Current in R1 branch = I  I / 

Current in R2 branch = I  I / 

Current in R3 branch = I  I / 
3 3 

The direction of the branch current will be in the direction of the greater value 

current. 

Thevenin’s Theorem: 

The current flowing through the load resistance R1 connected across any two 

terminals A and B of a linear active bilateral network is given by 

IL 
Vth 

R  R  R
Voc 

th L i L 

Where Vth = Voc is the open. circuit voltage across A and B terminal when RL is 

removed. 

Ri =Rth is the internal resistances of the network as viewed back into the open 

circuit network from terminals A & B with all sources replaced by their internal 

resistances if any. 

2 

3 
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i 

 

Explanation : 

Step – 1 for finding Voc 

Remove RL temporarily to find Voc. 

 

 

 
 

 
I  

E
 

R1  R2  r 

Voc  IR2 

Step – 2 finding Rth 

Remove all the sources leaving their internal resistances if any and viewed from 

open circuit side to find out Ri or Rth. 

 

 
 

 

Ri  (R1  r) || R2 

R  
(R1  r)R2 

R1  r  R2 

Step – 3 

Connect internal resistances and Thevenin’s voltage in series with load 

resistance RL. 
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Where Rth=thevenin resistance 

Vth=thevenin voltage 

Ith=thevenin current 

Ri  (R1  r) || R2 

I    
Vth  

Voc 
 

Rth  RL Ri  RL 

Example 01- Applying thevenin theorem find the following from given 

figure 

(i) the Current in the load resistance RL of 15 

Solution : (i) Finding Voc 

 Remove 15 resistance and find the Voltage across A and B 
 

Voc is the voltage across 12  resister 

Voc =
 2412 

18V
 

12  3 1 

 
(ii) Finding Rth 

Rth is calculated from the terminal A & B into the network. 
The 1  resister and 3  in are series and then 

parallel 
 

Rth = 3+1 // 12 

 

 
4 12 

 3 
16 

L 
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L 

 

 

 
 

 

 

 

 

 
(iii) I =  

Voc  
18 

 1 A. 
 

 

th R  R 15  3 

Example 02: Determine the current in 1Ω resistor across AB of the network 

shown in fig(a) using thevenin theorem. 

Solution:The circuirt can be redrawn as in fig (b). 

fig (a),(b),(c),(d) respectively 

Step-1 remove the 1Ω resistor and keeping open circuit .The current source is 

converted to the equivalent voltage source as shown in fig (c) 

Step-02 for finding the Vth we'll apply KVL law in fig (c) 

then 3-(3+2)x-1=0 

x=0.4A 

Vth=VAB =3-3*0.4=1.8V 

Step03-for finding the Rth,all sources are set be zero 

Rth=2//3=(2*3)/(2+3)=1.2Ω 

Step04- Then current Ith=1.8/(12.1+1)=0.82A 
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Example03: The four arms of a wheatstone bridge have the following 

resistances . 

AB=100Ω,BC=10Ω,CD=4Ω,DA=50Ω.AA galvanometer of 20Ω 

resistance is connected across BD. Use thevenin theorem to compute the current 

through the galvanometer when the potential difference10V is maintained 

across AC. 

 

 
Solution: 

  

step 01- Galvanometer is removed. 

step02-finding the Vth between B&D.ABC is a potential divider on which a 

voltage drop of 10vtakes place. 

Potential of B w.r.t C=10*10/110=0.909V 

Potential of D w.r.t C=10*4/54=.741V 

then, 

p.d between B&D is Vth=0.909-.741=0.168V 

Step03-finding Rth 

remove all sources to zero keeping their internal resistances. 
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L 

 

Rth =RBD=10//100+50//4=12.79Ω 

Step04; 

lastly Ith=Vth/Rth+RL=0.168/(12.79+20)=5mA 

 
Norton's Theorem 

Statement : In any two terminal active network containing voltage sources and 

resistances when viewed from its output terminals in equivalent to a constant 

current source and a parallel resistance. The constant current source is equal to 

the current which would flow in a short circuit placed across the terminals and 

parallel resistance is the resistance of the network when viewed from the open 

circuit side after replacing their internal resistances and removing all the 

sources. 

OR 

In any two terminal active network the current flowing through the load 

resistance RL is given by 

I  
I sc  Ri 

Ri  RL 

Where Ri is the internal resistance of the network as viewed from the open ckt 

side A & B with all sources being replaced by leaving their internal resistances 

if any. 

Isc is the short ckt current between the two terminals of the load resistance 

when it is shorted 

Explanation : 

 

 
Step – 1 

A &B are shorted by a thick copper wire to find out Isc 
Isc  E /(R1  r) 
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Isc = E / (R1 +r) 

Step – 2 

Remove all the source leaving its internal resistance if any and viewed from 

open circuit side A and B into the network to find Ri . 

 

 

Ri  (R1  r) || R2 

Ri  (R1  r)R2 /(R1  r  R2 ) 

 

 
 

 

 
 

 

 
Step – 3 

 

Connect Isc & Ri in parallel with RL 

I  
I sc  Ri 

Ri  RL 

Example 01:Using norton's theorem find the current that would flow through 

the resistor R2 whenit takes the values of 12Ω,24Ω&36Ω respectively in the fig 

shown below. 

Solution: 

L 
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S 


 

 

Step 01-remove the load resistance by making short circuit. now terminal AB 

short circuited. 

Step 02-Finding the short circuit current Isc 

First the current due to E1 is =120/40=3A,and due to E2 is 180/60=3A. 

then Isc=3+3=6A 

Step 03-finding resistance RN 

It is calculated by by open circuit the load resistance and viewed from open 

circuit and into the network and all sources are taken zero. 

RN=40//60=(40*60)/(40+60)=24Ω 

i) when RL=12Ω, IL=6*24/(24+36)=4A 

ii) when RL=24Ω,IL=6/2=3A 

iii) when RL=36Ω,IL=6*24/(24+36)=2.4A 

 

Maximum PowerTransfer Theorem 

Statement : A resistive load will abstract maximum power from a network 

when the load resistance is equal to the resistance of the network as viewed 

from the output terminals(Open circuit) with all sources removed leaving their 

internal resistances if any 

Proof: 

I  
Vth 

L R  R 
i L 

Power delivered to the load 

resistance is given by 
2 

P= 
I 

2 

R
    V RL  

L (R R ) 
L 
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L 

L 

S L L S L 

S L S L S L L 

2 

S 

 

Power delivered to the load resistance RL will be maximum 
 
 

  dP   
 

d V 
R

 
 

RL 
d RL R  R )2 L 

V 
2 
[(R  R )2  (2 R )(R  R )] 

 S L 

(RS 

L S L 

 R )4 

(R  R )2  2 R (R  R )  0 

R 
2 
 R 

2 
 2 R R  2 R R  2 R 

2 
 0 

RS  
 RL 

 
 

 

Hence the maximum power will be transferred to the load when load resistance is equal 

to the source resistance 

d ( 
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COUPLED CIRCUITS 

It is defined as the interconnected loops of an electric network through the 

magnetic circuit. 

There are two types of induced emf. 

(1) Statically Induced emf. 

(2) Dynamically Induced emf. 

Faraday’s Laws of Electro-Magnetic : 

Introduction  First Law :

Whenever the magnetic flux linked with a circuit changes, an emf is induced init. 
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OR 

Whenever a conductor cuts magnetic flux an emf is induced in it. 

Second Law :

It states that the magnitude of induced emf is equal to the rate of change of flux 

linkages. 

OR 

The emf induced is directly proportional to the rate of change of flux and 

number of turns 

Mathematically : 

e  
d

dt 

e    N 

Or e =  N 
d 

dt 

Where e = induced emf 

N = No. of turns 

 = flux 

‘- ve’ sign is due to Lenz’s Law 

Inductance :

It is defined as the property of the substance which opposes any change in 

Current & flux. 

Unit :    Henry 

Fleming’s Right Hand Rule:

It states that “hold your right hand with fore-finger, middle finger and 

thumb at right angles to each other. If the fore-finger represents the direction of 

field, thumb represents the direction of motion of the conductor, then the middle 

finger represents the direction of induced emf.” 

Lenz’s Law : 

It states that electromagnetically induced current always flows in such a 

direction that the action of magnetic field set up by it tends to oppose the vary 

cause which produces it. 

OR 

It states that the direction of the induced current (emf) is such that it 

opposes the change of magnetic flux. 

(2) Dynamically Induced emf :
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





















In this case the field is stationary and the conductors are rotating in an 

uniform magnetic field at flux density ‘B” Wb/mt2 and the conductor is lying 

perpendicular to the magnetic field. Let ‘l’ is the length of the conductor and it 

moves a distance of ‘dx’ nt in time ‘dt’ second. 

The area swept by the conductor = l. dx 

Hence the flux cut = ldx. B 

Change in flux in time ‘dt’ second = 

E = Blv 

Where V  
dx

 

dt 

Bldx 

dt 

If the conductor is making an angle ‘’ with the magnetic field, then 

 

(1) Statically Induced emf :

Here the conductors are remain in stationary and flux linked with it 

changes by increasing or decreasing. 

It is divided into two types . 

(i) Self-induced emf. 

(ii) Mutually-induced emf. 

(i) Self-induced emf :  It is defined as the emf induced in a coil due to the 

change of its own flux linked with the coil. 

 

 

 
 

 

 
If current through the coil is changed then the flux linked with its own 

turn will also change which will produce an emf is called self-induced emf. 

 

Self-Inductance :

e = Blv sin
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

It is defined as the property of the coil due to which it opposes any 

change (increase or decrease) of current or flux through it. 

 

Co-efficient of Self-Inductance (L) :

It is defined as the ratio of weber turns per ampere of current in the coil. 

OR 

It is the ratio of flux linked per ampere of current in the coil 

1st Method for ‘L’ :

L  
N

I 

Where L = Co-efficient of self-induction 

N = Number of turns 

 = flux 

I = Current 

 

 
2nd Method for L :
We know that 

L  
N

I 

 LI  N

 LI   N

 L 
dI 

 N 
d


dt dt 

 L 
dI 

 N 
d


 

dt dt 

 L 
dI 

 e 
 

dt L 

 L 
dI 

dt 
 eL 

 
Where L = Inductance 

e  N 
d 

is known as self-induced emf. 
L dt 

When 
dI 

1amp/ sec. 
dt 

e = 1 volt 

L = 1 Henry 

 L  
 eL

 

dI 

dt 
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A coil is said to be a self-inductance of 1 Henry if 1 volt is induced in it. 

When the current through it changes at the rate of 1 amp/ sec. 

3rd Method for L :

L  
M o M r AN 2 

l 

Where A = Area of x-section of the coil 

N = Number of turns 

L = Length of the coil 

(ii) Mutually Induced emf :

It is defined as the emf induced in one coil due to change in current in 

other coil. Consider two coils ‘A’ and ‘B’ lying close to each other. An emf will 

be induced in coil ‘B’ due to change of current in coil ‘A’ by changing the 

position of the rheostat. 

Mutual Inductance :

It is defined as the emf induced in coil ‘B’ due to change of current in coil 

‘A’ is the ratio of flux linkage in coil ‘B’ to 1 amp. Of current in coil ‘A’. 

Co-efficient of Mutual Inductance (M) 

Coefficient of mutual inductance between the two coils is defined as the 

weber-turns in one coil due to one ampere current in the other. 

1st Method for ‘M’ :

M  
N 21 

I1 

N2 = Number of turns 

M = Mutual Inductance 

1 = flux linkage 

I1 = Current in ampere 

2nd Method for M :

We know that 

M  
N 21 

I1 

 MI1  N21 

 MI1  N21 
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 M 
dI

1  N 
dt 2 

 M 
dI1  e 

 

dt M 

 M 
dI1  e 

 

dt M 

 M  
 eM

 

dI1 
dt 

d1 

dt 

Where eM  N2 
d

1 is known as mutually induced emf. 

dt 

eM  1volt 

Then M = 1 Henry 

A coil is said to be a mutual inductance of 1 Henry when 1 volt is 

induced when the current of 1 amp/sec. is changed in its neighbouring coil. 

3rd Method for M :

M  
Mo Mr AN1N2 

l 

Co-efficient of Coupling : 

Consider two magnetically coupled coils having N1 and N2 turns 

respectively. Their individual co-efficient of self-inductances are 
M M AN 2 

L1  
 o r 2   

l 
M M AN 2 

L2  
 o r 2   

l 

The flux 1 produced in coil ‘A’ due to a current of I1 ampere is 
L I M M AN 2 I 

    1 1  o r 1      1   

N1 l N1 

  
Mo Mr AN1I1 

1 l 

Suppose a fraction of this flux i.e. K11 is linked with coil ‘B’ 

Then M  
K11  N  K N N -------------------------------- (1) 

     1  1 2  

I1 
2 l / M oM rA 

Similarly the flux 2 produced in coil ‘B’ due to I2 amp. Is 

  
M1Mr AN2 I2 

2 l 

Suppose a fraction of this flux i.e. K22 is linked with coil ‘A’ 

Then M  
K22  N  K 2 N 21 N1 ------------------------------------------------------------ (2) 

I2 
1 l / M oM rA 

Multiplying equation (1) & (2) 

1 
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2 K K N 2 N 2 
M  2 

1     2
2 

1 
2 

2 
2  N1 

l / M M A 
0 r 

2  M M AN 2  M M AN 2 

 o r 1  o r 2 
 l  l 

Q K1  K2  K 
M 2  K 2.L .L 

1 2 

K 2 
M 2. 

 
 

L1.L2 
 

 

Where ‘K’ is known as the co-efficient of coupling. 

Co-efficient of coupling is defined as the ratio of mutual inductance 

between two coils to the square root of their self- inductances. 

 

Inductances In Series (Additive) :


Let M = Co-efficient of mutual inductance 

L1 = Co-efficient of self-inductance of first coil. 

L2 = Co-efficient of self-inductance of second coil. 

EMF induced in first coil due to self-inductance 

e L
1

   L 
dI 

 

 

1 dt 

Mutually induced emf in first coil 

eM 
1
 
  M 

dI
 

dt 

EMF induced in second coil due to self induction 

e L 
2
   L 

dI   
2 dt 

Mutually induced emf in second coil 

eM 
2

 
  M 

dI
 

dt 

Total induced emf 
e  e  e  e  e 

L 1 L 2 M 1 M 2 

If ‘L’ is the equivalent inductance, then 

 K 
M . 

L1.L2 

 K 
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 L 
dI   L 

dI
  M 

dI 
 L 

 

dI 
 M 

dI 
  

dt 1 dt dt 2 dt dt 

 L 
dI 

  
dI 

(L  L  2M ) 
2 

dt dt 1 

 
 

Inductances In Series (Substnactive) :

Let M = Co-efficient of mutual inductance 

L1 = Co-efficient of self-inductance of first coil 

L2 -= Co-efficient of self-inductance of second coil 

Emf induced in first coil due to self induction, 

e  L 
dI

 
 

L1 1 dt 

Mutually induced deIm f in fdirIst coil 
e    M 

M1 


 M 
 

  

dt 
 

dt 
Emf induced in second coil due to self-induction 

e  L 
dI

 
 

L2 2  dt 

Mutually indu ced deImf in sdeIcond coil 
e    M  M 

M 2  dt 
 dt 

Total induced emf 
e  e  e 

L1 L2 

 e  e
M 1 M 2 

Then  L 
dI   

  L 
dI dI

 
 

  

dI 
 M 

dI  

dt 1 dt  L 2 
dt 

 M dt dt 

 L 
dI 

  
dI 

(L  L  2M )  L  L  L  2M 
2 

dt dt 1 2 1 

Inductances In Parallel :

 L  L1  L2  2M 
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1 






Let two inductances of L1 & L2 are connected in parallel 

Let the co-efficent of mutual inductance between them is M. 

I  i1  i2 

dI 
 

di1 
 

di2 (1) 

dt dt dt 

e  L di1  M 
di2 

1 dt dt 

 L 
di2 

 M 
di1 

 L 
di 

2 dt dt 
1  M 

di2  L di2 



di1 
 

 

1 dt 

 (L  M ) 
di

dt 2 dt 
1  (L  M ) 

dt 
di2 

  

1 dt 2 dt 

 
di1 

 
(L2  M ) di2 (2) 

dt (L1  M ) dt 

dI 
 

di1 
 

di2 

dt dt dt 

 
(L2  M ) di2 

 
di2 

(L1  M ) dt dt 
dI  L2  M  di2 

 dt   L  M 1 dt --------------------------------- (3) 
  1 

If ‘L’ is the equivalent inductance 

e  L 
di

 
dt  L1 

di1 
 M

 
dt 

di 2 
 

 

dt 

L 
di 
 L di 

 M 
di2 

dt 1 dt dt 

 
di 

 
1  

L 
di1 

 M 
di2  ------------------------------ (4)  

dt L 
1 dt 


dt 

Substituting the value of 
di1

 

dt 
di 
 

1 


 

L2  M  di2----------------------------------------------------- 

 

L  M 

 (5) 

dt L  
1 L1  M  dt 

Equating equation (3) & (5) 

M 
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 L2  M   1 di2   1 L1
 L2  M   M  di2 

 L  M dt L L  M   dt  
 1       1  
 

L2  M 1     L2  M  
  L  M   1  L    M 

1 L  
1 L1  M  

L  M  L  M 1  L L  L M  L M  M 2 

   2 1  
  1   2 1 1 




L1  M L  L1  M 
L  L  2M 1  L L  M 2 

   1 2  
  1   2 




L1  M L  L1  M 

 L  L  2M  
1 L L  M 2 



1 2 L 1 2 

When mutual field assist. 

 

 
When mutual field opposes. 

CONDUCTIVELY COUPLED EQUIVALENT CIRCUITS 

 

 The Loop equation are from fig(a)  

V  L di 
 M 

di2 
1 1 dt dt 

V   L  di2   M 
di1 

2 2 dt dt 

 The loop equation are from fig(b)  

V  (L M ) 
di1  M 

 

d 
(i  i ) 

 
 1 1  dt

 
dt   1 2 

L 
L 

L L  M 2 

1  L2  2M 
1 2 

 L 
L1L2  M 2 

L1  L2  2M 
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V  (L M ) 
di2  M 

 

d 
(i  i ) 

 
 2 2  dt

 
dt   1 2 

Which, on simplification become 

V  L di1  M 
di2 

1 1 dt dt 

V  L  di2   M 
di1 

2 2 dt dt 

So called conductively equivalent of the magnetic circuit . Here we may 

represent ZA = L1-M . 

ZB = (L2-M) and ZC = M 

In case M is + ve and both the currents then ZA = L1-M , ZB = L2-M and ZC = 

M, also , if is – ve and currents in the common branch opposite to each other 

ZA = L1+M , ZB = L2+M and ZC = - M. 

Similarly, if M is –ve but the two currents in the common branch are additive, 

then also. 

ZA = L1+M , ZB = L2+M  and ZC = - M. 

Further ZA , ZB and ZC may also be assumed to be the T equivalent of the 

circuit. 

Exp. -01 : 

Two coupled cols have self inductances   L1= 1010-3H and L2= 2010- 
3H. The coefficient of coupling (K) being 0.75 in the air, find voltage in the 

second coil and the flux of first coil provided the second coils has 500 turns and 

the circuit current is given by i1 = 2sin 314.1A. 

Solution : 

M  K 

M  0.75 10 103  20 103
 

 M  10.6103 H 

 
The voltage induced in second coil is 

    M 
di1

 

2 dt 
 M 

di 

dt 
d 

 10.6 103 (2 sin 314t) 
dt 

 10.6 103  2  314 cos 314t. 

The magnetic CKt being linear, 

M  
N22 

i1 


 500  (K1) 

i1 

  
M

 

500  K 
 i1  

10.6 103 

 2 sin 314t 
500  0.75 

= 5.66 10-5 sin 314t 

L1L2 
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1  5.66 105 sin s 314t. 

Exp. 02 

Find the total inductance of the three series connected coupled 

coils.Where the self and mutual inductances are 

L1 = 1H, L2 = 2H, L3 = 5H 

M12= 0.5H, M23 = 1H, M13 = 1H 

Solution: 

LA = L1 + M12 + M13 

= 1 + 20.5 +1 

= 2.5H 

LB = L2 + M23 + M12 

= 2 + 1 + 0.5 

= 3.5H 

LC = L3 + M23 + M13 

= 5 + 1 + 1 

= 7H 

Total inductances are 

Lea = LA + LB + Lc 

= 2.5 + 3.5 + 7 

= 13H (Ans) 

Example 03: 

Two identical 750 turn coils A and B lie in parallel planes. A current 

changing at the rate of 1500A/s in A induces an emf of 11.25 V in B. Calculate 

the mutual inductance of the arrangement .If the self inductance of each coil is 

15mH, calculate the flux produced in coil A per ampere and the percentage of 

this flux which links the turns of B. 

Solution: We know that 

 

now, 

Wb/A 
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AC CIRCUIT & RESONANCE 
 

 

Direct Current Alternating Current 

 

 

 

 

(1) D.C. always flow in one 

direction and whose magnitude 

remains constant. 

(1) A.C. is one which reverse 

periodically in 

direction and whose magnitude 

undergoes a definite cycle changes 

in definite intervals of time. 

(2) 
 

High cost of production. 
(2) Low cost of production 

(3) 

 

 
(4) 

It is not possible by D.C. 

Because D.C. is dangerous to the 

transformer. 

Its transmission cost is too high. 

(3) 

 

 
(4) 

By using transformer A.C. voltage 

can be decreased or increased. 

A.C. can be transmitted to a long 

distance economically. 

 

 
 

Definition of A.C. terms :- 

Cycle : It is one complete set of +ve and –ve values of alternating quality 

spread over 360 or 2 radan. 

Time Period : It is defined as the time required to complete one cycle. 

Frequency : It is defined as the reciprocal of time period. i.e. f = 1/ T 

Or 

It is defined as the number of cycles completed per second. 

Amplitude : It is defined as the maximum value of either +ve half cycle or –ve 

half cycle. 
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Phase : It is defined as the angular displacement between two haves is zero. 
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OR 

Two alternating quantity are in 

phase when each pass through their zero 

value at the same instant and also attain 

their maximum value at the same instant in 

a given cycle. 

 
V = Vm sin wt 

i = Im sin wt 
 

Phase Difference :- It is defined as the angular displacement between two 

alternating quantities. 

OR 

If the angular displacement between two waves are not zero, then that is 

known as phase difference. i.e. at a particular time they attain unequal distance. 

OR 

Two quantities are out of phase if they reach their maximum value or 

minimum value at different times but always have an equal phase angle between 

them. 

Here V = Vm sin wt 

i = Im sin (wt-) 

In this case current lags voltage by an angle ‘’. 

Phasor Diagram: 

Generation of Alternating emf :- 

Consider a rectangular coil of ‘N” turns, area of cross-section is ‘A’ nt2 is 

placed in 

x-axis in an uniform magnetic field of maximum flux density Bm web/nt2. The 

coil is rotating in the magnetic field with a velocity of w radian / second. At 

time t = 0, the coil is in x-axis. After interval of time ‘dt’ second the coil make 

rotating in anti-clockwise direction and makes an angle ‘’ with x-direction. 

The perpendicular component of the magnetic field is  = n cos wt 

According to Faraday’s Laws of electro-magnetic Induction 
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2 (I 


0 

m 
sin  )2 

2

0 

 

 
 

 

 

 

 

 

 

Where 

e  N 
d


d 
dt 

 N  ( cos wt) 
dt m 

 N (mw cos wt) 

 Nwm sin wt 

 2fNm sin wt(Q w  2f ) 

 2fNBm Asin wt 

e  Em sin wt 

Em  2fNBm A 

f frequency in Hz 

Bm Maximum flux density in Wb/mt2 

Now when  or wt = 90 

e = Em 

i.e. Em = 2fNBmA 
 

Root Mean Square (R.M.S) Value :

The r.m.s. value of an a.c. is defined by that steady (d.c.) current which 

when flowing through a given circuit for a given time produces same heat as 

produced by the alternating current when flowing through the same circuit for 

the same time. 

Sinuscdial alternating current is 

i = Im sin wt = Im sin 

The mean of squares of the instantaneous values of current over one 

complete cycle
2 

i2.d


  (2  0) 

The square root of this value is 




 d

2 
i 2.d

0 

2
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I 
2 

4
m 

I  
2 

m 

2 2 

2 

0 

  

π 











  sin 2 2


 

 2 0 

 





  
Im  

 

 

I
r .m.s 


Im    0.707  I 

 

 

 

Average Value :

The average value of an alternating current is expressed by that steady 

current (d.c.) which transfers across any circuit the same charge as it transferred 

by that alternating current during the sae time. 

The equation of the alternating current is i = Im sin 
   i .d

Iav   (  0) 

 Im.sin
d 

 

 Im sin θ. dθ 
 

0 
π  

0 

 
I

m   cos     
 

I
m   cos  (cos00 

π 0 π 

 
I

m 1 0(1)
π 

Iav 

 
Iav 

 
2Im 



 
2  Maximum Current 

π 

Hence, Iav  0.637Im 

The average value over a complete cycle is zero 


I 

2  2 

m 

2  
 1  cos 2 

0  2 
d



I  

2  2

m 

2  sin 2  .d
0 


Im 

2  2

4  1 cos 2 d
0 

I 
2  2

m 

4  2  0
0 



m 


I 

2  2 

m  sin 4 

4   2 
0  2 

d

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1 

2 

1 

m 

 

Amplitude factor/ Peak factor/ Crest factor :- It is defined as the ratio of 

maximum value to r.m.s value. 

Ka  
MaximumValue 

 
Im   




R.M .S.Value Im 

 1.414 

 

Form factor : - It is defined as the ratio of r.m.s value to average value. 

Kf  
r.m.s.Value 

Average.Value 

Kf = 1.11 

 
0.707Im 




0.637Im 
 1.414 

 

Phasor or Vector Representation of Alternating Quantity:  

An alternating current or voltage, (quantity) in a vector quantity which 

has magnitude as well as direction. Let the alternating value of current be 

represented by the equation e = Em Sin wt. The projection of Em on Y-axis at 

any instant gives the instantaneous value of alternating current. Since the 

instantaneous values are continuously changing, so they are represented by a 

rotating vector or phasor. A phasor is a vector rotating at a constant angular 

velocity 

At t1, e1  Em sin wt1 

At t2 , e2  Em sin wt2 

Addition of two alternating Current :

Let e1  Em sin wt 

e2  E sin(wt  ) 
2 

The sum of two sine waves of the same 

frequency is another sine wave of same 

frequency but of a different maximum value and 

Phase. 

e 

Phasor Algebra :

A vector quantity can be expressed in terms of 

(i) Rectangular or Cartesian form 

(ii) Trigonometric form 

(iii) Exponential form 

2 

2 

2 

e2  e2  2e e cos1 2 1 2 
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a2  b2 

 a 

a  a   

 

(iv) Polar form 

 

 
E  a  jb 

 E(cos  j sin  ) 

Where a = E cos  is the active part 

b = E sin  is the reactive part 

  tan1 b  
 Phase angle 

 

j    1(90o ) 

j 2  1(180o ) 

j3   j(270o ) 

j 4  1 (360o ) 

 

 

 

 

 

 

 
(i) Rectangular for :- 

E  a  jb 

tan  b / a 

(ii) Trigonometric form :- 

E  E(cos  j sin ) 

(iii) Exponential form :- 

E  Ee j

(iv) Polar form :- 

E  E/  e (E  ) 

Addition or Subtration :- 

E1  a1  jb1 

E2  a2  jb2 

E1  E2  (a1  a2)  (b1  b2 
1 b1  b2 

  tan 

  1 2 

Multiplication : - 

E1  E2  (a1  ja1)  (a1  jb2 ) 

 (a1a2  b1b2)  j(a1a2  b1b2) 
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2 

2 

2 2 2 

a a  bb     tan
1 a1b2  b1a2 

  1  2 

E1  E11 

E2  E22 

1  2 

E1  E2  E1E2 

Division :- 

1  2 

E1  E11 

E2  E22 

 E E 1  
E1  

1     1     

E2 E22 E2 

 

A.C. through Pure Resistance :

Let the resistance of R ohm is connected across to A.C supply of applied 

voltage 

 

 

 

 

 

 
e  Em sin wt (1) 

Let ‘I’ is the instantaneous current . 

Here e = iR 

 i = e/R 

i = Emsin wt / R------------------------ (2) 

By comparing equation (1) and equation (2) we get alternating voltage 

and current in a pure resistive circuit are in phase 

Instantaneous power is given by 

P = ei 

= Em sin wt . Im sin wt 

= Em Im sin2 wt 

 
Em Im .2sin2 wt 

2 

 
Em . 

Im .(1  cos 2wt) 
2 

P  
Em . 

Im
  

Em . 
Im .cos 2wt

2 2 2 

i.e. P  
Vm . 

Im
 

Vm . 
Im .cos 2wt 

 2 

1 2 
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2 2 

2 2 

L 

 

 

Where Vm . 
Im    is called constant part of power. 

2 2 

Vm . 
Im .cos 2wt is called fluctuating part of power. 

 

The fluctuating part 

waves. 

Vm Im .cos 2wt 
2 

of frequency double that of voltage and current 

Hence power for the whole cycle is P  
Vm . 

Im     V .Irms 

 

 
 

A.C through Pure Inductance :

Let inductance of ‘L’ henry is connected across the A.C. supply 
 

 

v  Vm sin wt (1) 

According to Faraday’s laws of electromagnetic inductance the emf induced 

across the inductance 

V  L 
di

 
dt 

di 
is the rate of change of current 

dt 

V sin wt  L 
di

 
m dt 

di 
 

Vm sin wt 

dt L 

 di  
Vm sin wt.dt 
L 

Integrating both sides, 

 di   
Vm sin wt.dt 

i  
Vm 

 
cos wt 

 

L  w 

 P  VI watts 

rms 
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

i   
Vm cos wt 

wL 

i   
Vm cos wt 
wVL   

i   m sin 
 

 

wt 
 

VwL 
    m sin 


wt 

 2  [Q X  2fL  wL] 
  L 

XL  2 
MaxiVmum value of i is  
I  m   when  is unity. 

m    sin wt 
X

L   2 

Hence the equation of current becomes i  Im sin(wt   / 2) 

So we find that if applied voltage is rep[resented by 

flowing in a purely inductive circuit is given by 

i  Im sin(wt   / 2) 

Here current lags voltage by an angle /2 Radian. 

v  Vm sin wt , then current 

 

Power factor = cos 

= cos 90

= 0 

Power Consumed = VI cos 

= VI  0 

= 0 

Hence, the power consumed by a purely Inductive circuit is zero. 

A.C. Through Pure Capacitance : 



Let a capacitance of ‘C” farad is connected across the A.C. supply of applied 

voltage 

v  Vm sin wt (1) 

Let ‘q’ = change on plates when p.d. between two plates of capacitor is ‘v’ 

q = cv 

q = cVm sin wt 


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(IR)2  (IX )2 



L 

 X 

 L 

 X 

dq 
 c 

d 
(V sin wt) 

dt dt m 

i = cVm sin wt 

= wcVm cos wt 

 
Vm 

1/ wc 
 cos wt 

 
Vm  cos wt [Q X   

 1 


    1 is known as capacitive reactance 
 

Xc 

in ohm.] 

c wc 2fc 

 Im cos wt 

 Im sin(wt   / 2) 

Here current leads the supply voltage by an angle /2 radian. 

Power factor = cos 

= cos 90 = 0 

Power Consumed = VI cos 

= VI  0 = 0 

The power consumed by a pure capacitive circuit is zero. 

A.C. Through R-L Series Circuit : 

The resistance of R-ohm and inductance of L-henry are connected in series 

across the A.C. supply of applied voltage 

e  Em sin wt (1) 

V  VR  jVL 
 V 2  V 2   tan1 L 

 
 R 

   tan1 L 

 
 I R 2  X 

 

L 

2   tan 1 X 
R  



 


V  IZ  tan1 X L 
 



  R  

 R 

R L 




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2 2 



Where Z 

 R  jXL is known as impedance of R-L series Circuit. 

I   
V 

Z
 

Em sin wt 

Z

I  Im sin(wt  ) 

Here current lags the supply voltage by an angle . 

Power Factor : It is the cosine of the angle between the voltage and current. 

OR 

It is the ratio of active power to apparent power. 

OR 

It is the ratio of resistance to inpedence . 

Power :

 v.i 

 Vm sin wt.Im sin(wt  ) 

 Vm Im sin wt.sin(wt  ) 

 
1 

V I 
 

2 
m   m 

 
1 

V I 
 

2 
m   m 

2 sin wt.sin(wt  ) 

 

[cos  cos 2(wt  )] 

Obviously the power consists of two parts. 

(i) a constant part 
1 

V I cos which contributes to real power. 
 

2 
m m 

(ii) a pulsating component 
1 

V I cos(2wt  ) which has a frequency twice 
 

2 
m m 

that of the voltage and current. It does not contribute to actual power since its 

average value over a complete cycle is zero. 
Hence average power consumed 

 
1 

V I cos


2 
m m 

 
Vm 

. 
Im 

 VI cos

cos

Where V & I represents the r.m.s value. 

A.C. Through R-C Series Circuit : 

The resistance of ‘R’-ohm and capacitance of ‘C’ farad is connected across the 

A.C. supply of applied voltage 

R2  X L
2
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e  Em sin wt ---------------------------------------------------------------------------------- (1) 
 

V  VR  ( jVC ) 

 IR  ( jIXC ) 

 I (R  jXC ) 

V  IZ 
 

Where Z  R  jXC 

Z  R  jXC 

is known as impedance of R-C series Circuit. 

 R2  XC 
2
 

    tan1 XC   
 



  R  

V  IZ 

 I   
V 

Z  

 
Em sin wt 

Z  

 
Em sin(wt  ) 

Z

 I  Im sin(wt  ) 

Here current leads the supply voltage by an angle ‘’. 

A.C. Through R-L-C Series Circuit : 

Let a resistance of ‘R’-ohm inductance of ‘L’ henry and a capacitance of ‘C’ 

farad are connected across the A.C. supply in series of applied voltage 
 

e  Em sin wt (1) 

R2  XC 
2
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R2  ( X    X L C 
)2 

R2  ( X L  XC ) 
2 

 

  

e  VR  VL  VC 

 VR  jVL  jVC 

 VR  j(VL  VC ) 

 IR  j(IX L  IX C ) 

 I[R  j( X L  XC )] 

 I     tan1 X L
 

 
 

 

 

 
 XC 

 


 R 

 IZ 

Where 

Circuit. 

Z  I is known as the impedance of R-L-C Series 

If X L  XC , then the angle is +ve. 

If X L  XC , then the angle is -ve. 

Impedance is defined as the phasor sum of resistance and net reactance 

e  IZ 

 I   
e 

Z  
IZ    

Em sin wt 

Z  
 Im sin(wt  ) 

(1) If 

(2) If 

(3) If 

X L  XC , then P.f will be lagging. 

X L  XC , then, P.f will be leading. 

X L  XC , then, the circuit will be resistive one. The p.f. becomes unity 

and the resonance occurs. 

REASONANCE 

It is defined as the resonance in electrical circuit having passive or active 

elements represents a particular state when the current and the voltage in the 

circuit is maximum and minimum with respect to the magnitude of excitation at 

a particular frequency and the impedances being either minimum or maximum 

at unity power factor 

Resonance are classified into two types. 

(1) Series Resonance 

(2) Parallel Resonance 

(1) Series Resonance :- Let a resistance of ‘R’ ohm, inductance of ‘L’ 

henry and capacitance of ‘C’ farad are connected in series across A.C. supply 
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o 

 

 

 

e  Em sin wt 

The impedance of the circuit 

Z  R  j( X L  XC )] 

Z 

The condition of series resonance: 

The resonance will occur when the reactive part of the line current is zero 

The p.f. becomes unity. 

The net reactance will be zero. 

The current becomes maximum. 

At resonance net reactance is zero 

X L  XC  0 

 X L  XC 

 W L  
1
 

WoC 

 Wo 
2LC  1 

 W 2  
1
 

 

o LC 

 Wo 


 2fo 



 fo 


Resonant frequency ( f )  
  1 

.
    1 

 
o 2

Impedance at Resonance 

Z0 = R 
Current at Resonance 

I  
V

 
 

o 
R

 

Power factor at resonance 

p. f . 
 R 

 
R 
 1 QZ  R

o 

Zo R 

LC 

R2  ( X L  XC ) 
2 

LC 

2 LC 

LC 

1 

1 

1 
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0 

 

Resonance Curve :- 
 

At low frequency the Xc is greater and the circuit behaves leading and 
at high frequency the XL becomes high and the circuit behaves 

lagging circuit. 
If the resistance will be low the curve will be stiff (peak). 

 If the resistance will go oh increasing the current goes on decreasing and 

the curve become flat. 

Band Width :

At point ‘A’ the power loss is I 2R. 

The frequency is f0 which is at resonance. 
I 2 R 

At point ‘B’ the power loss is   0 . 
2 

The power loss is 50% of the power loss at point 

‘A”/ 

 

 

 

Hence the frequencies 

corresponding to point ‘B’ is known as half power frequencies f1 & f2. 

f1 = Lower half power frequency 

f1  f0 
 R

4L 

F2 = Upper half power frequency 

f2  f0 
 R

4L 

Band width (B.W.) is defined as the difference between upper half power 

frequency ad lower half power frequency. 

B.W. = f2  f1 
R 

2L 
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Quality factor =  
2f0 L.

 
R 

I 2 RT 

f 

 

Selectivity : 

Selectivity is defined as the ratio of Band width to resonant frequency 

Selectivity = 
B.W .

 
f0 

   
R 

2L 
Selectivity  

R
 

2fo L 

Quality Factor (Q-factor) :

It is defined as the ratio of 2  Maximum energy stored to energy dissipated 

per cycle 
1
 

2  LI 2 

Q-factor = 2 
0

 

L 2I 2 

    
I 2RT 

 
L.2I 2 

I 2 RT 

 
L.2I 2 

I 2 RT 

 
2L. 

RT 

 
Q 

1. 
 


 I 





Quality factor is defined as the reciprocal of power factor. 

 

It is the reciprocal of selectivity. 

Q-factor Or Magnification factor  
Voltage across Inductor.

 
Voltage 

 
I0 X L 

I0 R 

 
X L 

R 

across resistor 

 
2f0L 

 
W0 L 

R R 
 

 

Q-factor factor  
Voltage across Capacotor. 

Voltage across resistor 

 
I0 Xc 

I0 R 

Q factor =  1. 

cos

0 

Q- factor =  
W0 L 

R 
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Q-factor 
1 

W0CR 

 

 
XC 

R 

 
1 

2f 0C 

 

 
1 

2f 0CR 

 
 

 

Q2  
W0 L 



R 

Q2  
1
 

R2C 

1 
 

 

W0CR 

 

 

Graphical Method :

(1) Resistance is independent of frequency It represents a straight line. 

(2) Inductive Reactance XL = 2fL 

It is directly proportional to frequency. As the frequency increases , XL 

increases 

(3) Capacitive Reactance XC = 
   1 

 
2fC 

 

It is inversely proportional to frequency. As the frequency increases, XC 

decreases. 

When frequency increases, XL increases and XC decreases from the 

higher value. 

Q  
1
 L 

R C 

Q 
1 

R2C 
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L 

L 

L L C 

C 0 

 
 

 

At a certain frequency. XL = XC 

That particular frequency is known as Resonant frequency. 

Variation of circuit parameter in series resonance: 

(2) Parallel Resonance :- Resonance will occur when the reactive part of the 

line current is zero. 

 

 

 
At resonance, 

IC – ILsin  = 0 

IC  IL sin

 
V 



XC 

 
V 



XC 

V 

 

V 

R2  X 2 

sin 


 X L 

 

 
1   

 X L 
 

XC R2  X 2 

 R2  X 2  X .X 

 Z 2  X L .X  W L  
1

 

W0C 

R2  X L
2
 

R2  X L
2
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R2  X L 
2
 R2  X L 

2
 

1 

2

1 

LC 
 

R 
2 

L2 

L 

 

Z 2  
L

 

C 

 R2  X 2 
 L

 
L 

C
 

 R2  (2f L)2  
L

 
 

0 
C

 

 R2  4 2 f 
2L2  

L
 

 

0 
C

 

 4 2 f 
2 L2  

L 
 R2 

 

0 

 f 2 
1 C 

 
 L 

 R2 



0 4 2 f02 
L2  C 

 f0 


f0 = Resonant frequency in parallel circuit. 

Current at Resonance = IL cos

 
V 

. 
R 

 

  
VR 

R2  X 2 

 
VR 

Z 2 

 
VR 

L / C 




 

V 

L / RC 
V 

Dynamic Impedence 

L / RC  Dynamic Impedance of the circuit. 

or, dynamic impedances is defined as the impedance at resonance frequency in 

parallel circuit. 

Parallel Circuit :



The parallel resonance condition: 
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C 

Z 

C 



R 

 

When the reactive part of the line current is zero. 

The net reactance is zero. 

The line current will be minimum. 

The power factor will be unity 

Impedance Z1  R1  jX L 

Z2  R2  jXC 

Admittance Y1 
1 

 
1 

R1  jX L 

 
(R1  jX L ) 

(R1  jX L )(R1  jX L ) 

 
R1  jX L 

R1
2  X L

2
 

Y  
R1

 
1 R 2  X 2 

 j 
X L

R 2  X 2 

 
Admittance Y 

1 L 1 L 

 
1 

 
1 

2 R1  jXC 

  
(R2  jXC ) 

(R21  jXC )(R2 

 
R2  jX L 

R2
2  X 2 

 
jXC ) 

Y  
R2

 
2 R 2  X 2 

 j 
X

C
R 2  X 2 

2 C 2 C 
Total Admittance Admittance  1  1 1 

 

 
 Y  Y1  Y2 

R1 

 
 j 

X L
 

   Z   Z   
  1 2 

 
   R2  j 

XC 
  Y  R 2  X 2 R 2  X 2 R2

2  XC 2 R 2  X 2 
1 L 1 L 2 C 

  R1  R 2  X L X C 
 Y  R 2  X   2 

 R 2  X   2  j  R 2  X 2  




R 2  X   2 
1 

At Resonance, 
X L 




L 2 C  1 L 2 C      



XC  0 
 

R1
2  XL 

2 R2
2  X 2 

X L 
R 2  X 

XC 
R 2  X 2 

1 L 2 C 

 X R 2  X 2  X R 2  X 2 
 2fLR 2  1   1  2 

 4 2 f 2 L2 


   2 
4 2 f 2C 2  2fC 1 



 2fLR2
2
 

 
    L  

2fC 2 



R 
2 

 1 
2 fC 

 

2fL2 
 

 

C 

2 

1 

Z 

Z 
2 



L 2 C C 1 L 
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f 
1 

2

L R 
2 

LC L  2 
    1 

 1 

2 

1 

L 

C 

2 

 

 
L R 2 

 
 

2fL2 
2 

 

2  
2 

1   2fLR2 

 
21fC  L fC 

 R 2  2fL
 L

  R 2 



2 
 1     

C 
2 

  

fC  C 
L
  
 R 2 2 

 4 2 f 2 LC  C 1 L  CR 
L 
 R 2 L  CR 2 2 

C 
2 

1  L  CR 2 
 4 2 f 2   1  

LC  L  CR 
2  

1  L  CR 2 

 f 2   1  

4 
2 
LC  L  CR 

2 




 f 



 f 



f is called Resonant frequency. 

If R 2  0 

Then f  
1 L  CR1

2

 

2

  
1 

2L 

L2C 

L  CR1
2 

C 

 
1 L 

2L C 
 R 2

 
1 L 

2 L2C 

R 
2 

 1 
2

 

 

 
 

If R1 and R2 = 0, then 

 

 

Comparison of Series and Parallel Resonant Circuit :

Item Series ckt (R-L-C) Parallel ckt (R– L and 

C) 

f  
1 

2

1 

LC 


1 

2 LC 

f 
1 

2

L 

L2C 

1  L  CR 2 
 1 

2   LC L  CR 


 2  
2 

1 

2




L  CR 2 


1 

L C  LC R 2 2 

2  
2 


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

 Impedance at Resonance Minimum Maximum 

 Current at Resonance 
V 

Maximum= R 

  V  

Minimum= (L / CR) 

 Effective Impedance R L 

CR 

 P.f. at Resonance Unity Unity 

 Resonant Frequency 
  1  

2 LC 

2 

  1 1 
 

R 

2 LC L2 

 It Magnifies Voltage Current 

 Magnification factor 
WL 

R 

WL 

R 















Parallel circuit :




Z  R  jX    R 2  X 2 
1 1 L 1 L 1 

Z  R  jX    R2 2  X 2  
2 1 C 1 C 2 

I  
V 

 
V 

    I   
1 Z  

  

Z 1 1 1 

Where 
1 1 1 

 VY 
 

1 

1 

Here Y1  Admittance of the circuit 

Admittance is defined as the reciprocal of impedence. 

V 

Z 
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I1   I 2 
2 2 

2 

 

I  VY  
v
 

 

1 1 

1  jX L

I  
V

 

Z 2   21 

 
V 

1  VY2  I 22 

Z 2 

 

 

 

 
 

I   2I1I 2 cos(1 2 ) 

I  I1 1  I22 

 

 
The resultant current “I” is the vector sum of the branch currents I1 & I2 

can be found by using parallelogram low of vectors or resolving I2 into their X 

R 
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2 

 

– and Y- components ( or active and reactive components respectively) and then 

by combining these components. 

 

Sum of active components of I1 and I2 = I1 cos 1+ I2 cos 2 

Sum of the reactive components of I1 and I2 = I2 sin 2 - I1 sin 1 

 
EXP – 01 : 

A 60Hz voltage of 230 V effective value is impressed on an inductance of 

0.265 H 

(i)  Write the time equation for the voltage and the resulting current. Let the 

zero axis of the voltage wave be at t  = 0. 

(ii) Show the voltage and current on a phasor diagram. 

(iii) Find the maximum energy stored in the inductance. 

Solution :- 

Vmax  2V  2  230V 

f = 60Hz, W  2f  2  60  377rad / s. 

xl  wl  377  0.265  100 . 

(i) The time equation for voltage is V (t)  230 2 
sin 377t.

 

I 
max 

 Vmax / xl  230 /100.  2.3 

  90o (lag ). 

QCurrente quation is. 

i(t)  2.3 2 sin(377t   / 2) 

or 

(ii) Iti 

 2.3 2 cos 377t 

1 1 

(iii) or E  LI 2max 


 0.265  (2.3 2)2  1.4J 
 

max 
2 2

 

 
 

 

 

Example -02 : 

The potential difference measured across a coil is 4.5 v, when it carries a 

direct current of 9 A. The same coil when carries an alternating current of 9A at 

25 Hz, the potential difference is 24 v. Find the power and the power factor 

when it is supplied by 50 v, 50 Hz supply. 

Solution : 

Let R be the d.c. resistance and L be inductance of the coil. 

R  V / I  4.5 / 9  0.5

3 
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R2  222066L2 ) 

Z 2  R 2 

2 2 

1 



With a.c. current of 25Hz, z = V/1. 
24 

 2.66

9 

xl  

 2.62

xl 

xl 

At 50Hz 
xl 

 2  25 L 

 0.0167


 2.62 2  5.24

Z  0.52  5.242 

 5 .06 

I = 50/5.26 = 9.5 A 

P = I2/R = 9.52  0.5 = 45 watt. 

Example – 03 : 

A 50- f capacitor is connected across a 230-v, 50 – Hz supply. Calculate 

(a) The reactance offered by the capacitor. 

(b) The maximum current and 

(c) The r.m.s value of the current drawn by the capacitor. 

Solution : 

(a) xl  
wc

  
1 



2π fe 

1 

2  50  50 106
 

 63.6

(c) Since 230 v represents the r.m.s value 
Q I rms  230 / xl  230 / 63.6  3.62 A 

(b) Im    Ir.m.s   3.62   5.11A 

Example – 04 : 

In a particular R – L series circuit a voltage of 10v at 50 Hz produces a 

current of 700 mA. What are the values of R and L in the circuit ? 

Solution : 

(i) Z 



V  1z 

10  700 103 

 10 / 700 103  100 / 7 

R2  98696L2  10000/ 49 --------------------- (I) 

(ii) In the second case Z 

Q10  500 103  20 

 20 

(R2  98696L2 ) 

2.662  0.52 

R 2  (2  50L) 2 

R2  98696L2 

(R 2  98696L2 ) 

R 2  (2  75L) 2 

R 2  222066L2 ) 
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1 

2 101 104
 

 

R2  222066L2  400 (II) 

Subtracting Ea.(I) from (ii), we get, 

222066L2  98696L2  400  (10000 / 49) 

 123370L2  196 

 L2 


 L 

196 
 

 

123370 
196 

 0.0398H 

123370 

 

 
= 40 mH. 

Substituting this value of L in equation (ii) we get 

 R  6.9 . 

R 2  222066L2 (0.398)2  400 

 

Example – 04 : 

A 20 resistor is connected in series with an inductor, a capacitor and an 

ammeter across a 25 –v, variable frequency supply. When the frequency is 

400Hz, the current is at its Maxm value of 0.5 A and the potential difference 

across the capacitor is 150v. Calculate 

(a) The capacitance of the capacitor. 

(b) The resistance and inductance of the inductor. 

Solution : 

Since current is maximum, the circuit is in resonance. 
xl  VC /1  150 / 0.5  300

(a) xl  1/ 2fe  300  1/ 2  400 c 

 c  1.325 106 f  1.325f . 

(b) xl  xl  150 / 0.5  300

2  400 × L =300 

L = 0.49H 

(c) At resonance, 

Circuit resistance = 20+R 

 V/Z = 2510.5 

 R = 30

Exp.-05 

An R-L-C series circuits consists of a resistance of 1000, an inductance 

of 100MH an a capacitance of w f or 10PK 

(ii) The half power points. 

Solution : 

fo   
106

 

2
 159KHz i) 
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LC 

1 
 

R 
2 

L2 

 

 
ii) 

 
 1 

R 

 
1 



1000 

 

 100 

 

iii) 
f  fo  

R
 

1 4l 

 159 103  
1000

 

4 101
 

 158.2KHz 

f  fo  
R

 
2 4l 

 159 103  
1000

 
4 101

 

 159.8KHz. 

Exp. -06 

Calculate the impedance of the parallel –turned circuit as shown in fig. 

14.52 at a frequency of 500 KHz and for band width of operation equal to 20 

KHz. The resistance of the coil is 5. 

Solution : 

At resonance, circuit impedance is L/CR. We have been given the value 

of R but that of L and C has to be found from the given the value of R but that 

of L and C has to be found from the given data. 

BW  
R

 

2l 

,20 103  
5
 

2  l 
or l  39H 

fo  
1 

 

2

C = 2.6 10-9 

Z = L/CR = 3910-6 / 2.6 10-9 5 

= 3 103

Example: A coil of resistance 20Ω and inductance of 200µH is in parallel with 

a variable capacitor. This combination is series with a resistor of 8000Ω.The 

voltage of the supply is 200V at a frequency of 106HZ.Calculate 

i) the value of C to give resonance 

ii) the Q of the coil 

iii) the current in each branch of the circuit at resonance 

Solution: 

 

XL=2πfL=2π*106*200*10-6=1256Ω 

The coil is negligible resistance in comparison to reactance. 

L 

C 

101 

1011 

1 

2

1 

39 106 C (39 106 )2 


52 
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ii) Q= =62.8 

iii) dynamic impedance of the circuit Z=L/CR=200*10-6/(125*10- 
12*20)=80000Ω 

total Z=80000+8000=88000Ω 

I=200/88000=2.27mA 

p.d across tuned circuit=2.27*10-3*80000=181.6V 

current through inductive branch= 
 

current through capacitor branch= 

=181.6*2π*106*125*10-12=142.7mA 
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POLY-PHASE CIRCUIT 

Three-phase circuits consists of three windings i.e. R.Y.B 
 

 

 

 

 

ER  Em sin wt  Em0 

EY  Em sin(wt  120)  Em  120 

EB  Em sin(wt  240)  Em  240  Em120 
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3 -  Circuit are divided into two types 

 Star Connection 

 Delta Connection 

 
 

Star Connection:  

 
If three similar ends connected at one point, then it is known as star connected 

system. 

The common point is known as neutral point and the wire taken from the 

neutral point is known as Neutral wire. 

Phase Voltage :

It is the potential difference between phase and Neutral. 

Line Voltage : 

It is It is the potential difference between two phases. 

Relation Between Phase Voltage and Line Voltage :


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3 

VRN  VYN  2VRN VYN Cos60o 

VPh  V 2 ph  2V V 
2 

ph  ph 

1 

2 

L   L 









  

Line VolatageVRY  VRN  VYN 

VL 









VL 




3VPh 

3VPh 

Since in a balanced B –phase circuit VRN= VYN = VBN=Vph 

Relation Between Line current and Phase Current :- 

In case of star connection system the leads are connected in series with 

each phase 

Hence the line current is equal to phase current 

IL = Iph 

Power in 3- Phase circuit:- 

P  V 
ph 

I 
ph 

cos  per phase 

 3V 
ph 

I 
ph 

cos  for 3 phase 

 3 
V

L I 
L 

cos  (Q V
L

  3V 
ph

 

P  3V I cos

Summaries in star connection: 

i) The line voltages are  apart from each other. 

ii) Line voltages are  ahead of their respective phase voltage. 

iii) The angle between line currents and the corresponding line voltage is 30+φ 

iv) The current in line and phase are same. 

 
Delta Connection :- 

2 

3VPh 
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3Iph 
2 

 

 

If the dissimilar ends of the closed mesh then it is called a Delta 

Connected system 

Relation Between Line Current and Phase Current :- 
 

Line Current in wire – 1 = i 
R i Y 

 

Line Current in wire -2 = i 
Y  i B 
 

Line Current in wire – 3 = i 
B i R 

 
 

I L  I R  IY 








 , IL 

Relation Between Line Voltage & Phase Voltage : 
VL  Vph 

Power =  3VL I L cos

Summaries in delta: 

I  I  2IR IY cos 60 
2 2 0 

R Y 

I 2  I 2  2I I 
ph ph ph   ph 

 
1 

2 

3I ph 

2 
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i) Line currents are apart from each other. 

ii) Line currents are behind the respective phase current. 

iii) The angle between the line currents and corresponding line voltages is 30+φ 
Measurement of Power : 

(1) By single watt-meter method 

(2) By Two-watt meter Method 

(3) By Three-watt meter Method 

Measurement of power By Two Watt Meter Method :- 
 
 

Phasor Diagram :- 

Let VR, VY,VB are the r.m.s value of 3- voltages and IR,IY,IB are the r.m.s. 

values of the currents respectively. 

Current in R-phase which flows through the current coil of watt-meter 

W1 = IR 

And W2 = IY 
  

Potential difference across the voltage coil of W1  VRB  VR  VB 
  

And W2  VYB  VY  VB 

Assuming the load is inductive type watt-meter W1 reads. 

W1  VRB IR cos(30 ) 

W1  VL IL cos(30 ) ----------------------------- (1) 

Wattmeter W2 reads 

W2  VYBIY cos(30  ) 

W2  VL IL cos(30  ) --------------------------------- (2) 

W1  W2  VL IL cos(30 )  VL IL cos(30  ) 

 VL IL [cos(30 )  VL IL cos(30  )] 

 VLI L (2 cos 30o cos) 

 VL IL (2  3 cos) 
2 

W1  W2  3VL IL cos (3) 

W1  W2  VL IL [cos(30 )  cos(30  ) 
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 VLI L(2 sin 30o sin ) 

 VL IL 
(2  

1 
 sin ) 

2 

W1  W2  VL IL sin

W1 W2 



W1  W2 

 tan



 tan 


1 

   tan 

VL IL sin 

3VLIL cos



3 W1  W2  

W  W   
 1 2 
3 W1  W2  

W  W   
 1 2 

Variation in wattmeter reading with respect to p.f: 
 
 

Pf W1 reading W2 reading 

φ=0,cos φ=1 +ve equal +ve equal 

φ=60,cos φ=0.5 0 +ve 

φ=90,cos φ=0 -ve, equal +ve equal 

 
Exp. : 01 

A balanced star – connected load of (8+56). Per phase is connected to a 

balanced 3-phase 100-v supply. Find the cone current power factor, power and 

total volt-amperes. 

Solution : 

Z ph 

Vph  400 / 

 10

 23 / v 

I ph  Vph / Z ph  231 /10  23.1A 

i) IL = Zph= 23.1A 

ii) P.f. = cos = Rph/zph = 8/10 = 0.8 (lag) 

iii) PowerP  3VL IL cos

 3  400  23.1 0.8 

= 12, 800 watt. 

iv) Total volt ampere s =3 VL IL 

= 3  400 23.1 

= 16, 000 VA. 

1 

3 

82  62 

3 
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Exp. -02 

Phase voltage and current of a star-connected inductive load is 150V and 

25A. Power factor of load as 0.707 (Lag). Assuming that the system is 3-wire 

and power is measured using two watt meters, find the readings of watt meters. 

Solution : 

Vph = 150V 

VL = 3  150 

Iph = IL = 25A 

Total power = 3 VLIL cos  = 3  150 3  25  0.707 = 7954 watt. 

W1 + W2 = 7954.00, cos = 0.707 

 = cos-1 (0.707) = 45, tan 45 = 1 

Now for a lagging power factor, 

tan 

 1 

3(W1  W2 ) /(W1  W2 ) 

3
(W1  W2 ) 



 
7954 




(W1 W2 )  4592w 

From (i) and (ii) above, we get 

W1 = 6273w W2 = 1681w 
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UNIT – I 
 

 

TRANSIENTS 

 
Introduction: 

For higher order differential equation, the number of arbitrary constants equals 

the order of the equation. If these unknowns are to be evaluated for particular solution, 

other conditions in network must be known. A set of simultaneous equations must be 

formed containing general solution and some other equations to match number of 

unknown with equations. 

We assume that at reference time t=0, network condition is changed by switching 

action. Assume that switch operates in zero time. The network conditions at this instant 

are called initial conditions in network. 

1. Resistor: 

 

Eq.1 is linear and also time dependent. This indicates that current through resistor 

changes if applied voltagechanges instantaneously. Thus in resistor, change in current is 

instantaneous as there is no storage of energy in it. 

 

2. Inductor: 

If dc current flows through inductor, dil/dt becomes zero as dc current is constant with 

respect to time. Hence voltage across inductor, VL becomes zero. Thus, as for as dc 

quantities are considered, in steady stake, inductor acts as short circuit 
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3. Capacitor: 
 
 

If dc voltage is applied to capacitor, dVC / dt becomes zero as dc voltage is constant with 

respect to time. 
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3 

Hence the current through capacitor iC becomes zero, Thus as far as dc quantities are 

considered capacitor actsas open circuit. 

Thus voltage across capacitor cannot change instantaneously. 

Initial Condition for (DC steady state solution) 

 
• Initial condition: response of a circuit before a switch is first activated. 
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– Since power equals energy per unit time, finite power requires continuous change in energy. 

• Primary variables: capacitor voltages and inductor currents-> energy storage elements 

 

 Capacitor voltages and inductor currents cannot change instantaneously but 

Should be continuous -> Continuity of capacitor voltages and inductor currents 

 The value of an inductor current or a capacitor voltage just prior to the closing (or opening) of a switch 

is equal to the value just after the switch has been closed (or opened). 

1. TRANSIENT RESPONSE OF RL CIRCUITS: 

Consider the following series RL circuit given below 
 

 



KIIT POLYTECHNIC 
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Both Equation 5 and Equation 6 are same. But, we can easily understand the above waveform of current 

flowing through the circuit from Equation 6 by substituting a few values of t like 0, τ, 2τ, 5τ, etc. 

In the above waveform of current flowing through the circuit, the transient response will present up to five time 

constants from zero, whereas the steady state response will present from five time constants onwards. 

 

 

2. TRANSIENT RESPONSE OF RC CIRCUITS: 

Ideal and real capacitors: An ideal capacitor has an infinite dielectric resistance and plates (made of 

metals) that have zero resistance. However, an ideal capacitor does not exist as all dielectrics have some 
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leakage current and all capacitor plates have some resistance. A capacitor’s of how much charge (current) it 

will allow to leak through the dielectric medium. Ideally, a charged capacitor is not supposed to allow 

 

 
leaking any current through the dielectric medium and also assumed not to dissipate any power loss in 

capacitor plate’s resistance. Under this situation, the model as shown in fig. 10.16(a) represents the ideal 

capacitor. However, all real or practical capacitor leaks current to some extend due to leakage resistance of 

dielectric medium. This leakage resistance can be visualized as a resistance connected in parallel with the 

capacitor and power loss in capacitor plates can be realized with a resistance connected in series with 

capacitor. The model of a real capacitor is shown in fig. 

 
Let us consider a simple series RC−circuit shown in fig. 10.17(a) is connected through a switch ‘S’ to a constant 

voltage source . 

 
 
 

The switch ‘S’ is closed at time t =0’ It is assumed that the capacitor is initially charged with a voltage and the 

current flowing through the circuit at any instant of time ‘’ after closing the switch is 

 
3. Current decay in source free series RL circuit: 

 

t = 0- , , switch k is kept at position ‘a’ for very long time. Thus, the network is in steady state. Initial current 

through inductor is given as, 

 

Because current through inductor cannot change instantaneously 
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Assume that at t = 0 switch k is moved to position 'b'. 

Applying KVL, 
 

 

 

 

 
 

Rearranging the terms in above equation by separating variables 

 

Integrating both sides with respect to corresponding variables 

Where k’ is constant of integration. 

To find- k’: 

Form equation 1, at t=0, i=I0 

Substituting the values in equation 3 

Where k’ is constant of integration. 

 
 

To find- k’:Form equation 1, at t=0, i=I0 

Substituting the values in eq 
 
 

 

From the graph, H is clear that current is exponentially decaying. At point P on graph. The current value is 

(0.363) times its maximum value. The characteristics of decay are determined by values R and L which are two 

parameters of network. 

The voltage across inductor is given by 
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4. TRANSIENT RESPONSE OF RLC CIRCUITS 
 

In the preceding lesson, our discussion focused extensively on dc circuits having resistances with either inductor 

or capacitor (i.e., single storage element) but not both. Dynamic response of such first order system has been 

studied and discussed in detail. The presence of resistance, inductance, and capacitance in the dc circuit 

introduces at least a second order differential equation or by two simultaneous coupled linear first order 

differential equations. We shall see in next section that the complexity of analysis of second order circuits 

increases significantly when compared with that encountered with first order circuits. Initial conditions for the 

circuit variables and their derivatives play an important role and this is very crucial to analyze a second order 

dynamic system. 

5. Response of a series R-L-C circuit: 

Consider a series RL circuit as shown in fig.11.1, and it is excited with a dc voltage source C−−sV. 

Applying around the closed path for, 

 

The current through the capacitor can be written as Substituting the current ‘’expression in eq.(11.1) and 

rearranging the terms, 
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The above equation is a 2nd-order linear differential equation and the parameters associated with the differential 

equation are constant with time. The complete solution of the above differential equation has two components; 

the transient response and the steady state response. Mathematically, one can write the complete solution as 

 
 

Since the system is linear, the nature of steady state response is same as that of forcing function (input voltage) 

and it is given by a constant value. Now, the first part of the total response is completely dies out with time while 

and it is defined as a transient or natural response of the system. The natural or transient response (see Appendix 

in Lesson-10) of second order differential equation can be obtained from the homogeneous equation (i.e., from 

force free system) that is expressed by 

 

And solving the roots of this equation (11.5) on that associated with transient part of the complete solution 

(eq.11.3) and they are given below. 
 

The roots of the characteristic equation are classified in three groups depending upon the values of the 

parameters, Rand of the circuit Case-A (over damped response): That the roots are distinct with negative real 

parts. Under this situation, the natural or transient part of the complete solution is written as 

 

and each term of the above expression decays exponentially and ultimately reduces to zero as and it is termed as 

over damped response of input free system. A system that is over damped responds slowly to any change in 

excitation. It may be noted that the exponential term t→∞11tAeαtakes longer time to decay its value to zero 

than the term21tAeα. One can introduce a factor ξ that provides information about the speed of system response 
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and it is defined by damping ratio 
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UNIT II 

 

 

 
Introduction: 

TWO PORT NETWORK 

A pair of terminals through which a current may enter or leave a network is known as a port. Two-terminal 

devices or elements (such as resistors, capacitors, and inductors) result in one-port networks. Most of the circuits 

we have dealt with so far are two-terminal or one-port circuits, represented in Figure 2(a). We have considered 

the voltage across or current through a single pair of terminals—such as the two terminals of a resistor, a 

capacitor, or an inductor. We have also studied four-terminal or two-port circuits involving op amps, transistors, 

and transformers, as shown in Figure 2(b). In general, a network may have n ports. A port is an access to the 

network and consists of a pair of terminals; the current entering one terminal leaves through the other terminal so 

that the net current entering the port equals zero. 

Figure 2: (a) One-port network, (b) two-port network. 

A pair of terminals through which a current may enter or leave a network is known as a port. A port is an access 

to the network and consists of a pair of terminals; the current entering one terminal leaves through the other 

terminal so that the net current entering the port equals zero. There are several reasons why we should study 

two-ports and the parameters that describe them. For example, most circuits have two ports. We may apply an 

input signal in one port and obtain an output signal from the other port. The parameters of a two-port network 

completely describe its behavior in terms of the voltage and current at each port. Thus, knowing the parameters 

of a two port network permits us to describe its operation when it is connected into a larger network. Two-port 

networks are also important in modeling electronic devices and system components. For example, in electronics, 

two-port networks are employed to model transistors and Op-amps. Other examples of electrical components 

modeled by two-ports are transformers and transmission lines. 

Four popular types of two-port parameters are examined here: impedance, admittance, hybrid, and transmission. 

We show the usefulness of each set of parameters, demonstrate how they are related to each other 
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IMPEDANCE PARAMETERS: 

Impedance and admittance parameters are commonly used in the synthesis of filters. They are also useful in the 

design and analysis of impedance-matching networks and power distribution networks. We discuss impedance 

parameters in this section and admittance parameters in the next section. 

A two-port network may be voltage-driven as in Figure 3 (a) or current-driven as in Figure 3(b). From either 

Figure 3(a) or (b), the terminal voltages can be related to the terminal currents as 

V1=Z11I1+Z12I2 

V2=Z21I1+Z22I2 

Where the z terms are called the impedance parameters, or simply z parameters, and have units of ohms. 
 
 

The values of the parameters can be evaluated by setting I1 = 0 (input port open-circuited) or I2 = 0 (output port 

open-circuited). 

 

 
Since the z parameters are obtained by open-circuiting the input or output port, they are also called the open- 

circuit impedance parameters. Specifically, 

 
z11 = Open-circuit input impedance 

z12 = Open-circuit transfer impedance from port 1 to port 2 z21 

= Open-circuit transfer impedance from port 2 to port 1 z22 = 

Open-circuit output impedance 

We obtain z11 and z21 by connecting a voltage V1 (or a current source I1) to port 1 with port 2 open-circuited as 

in Figure 4 and finding I1 and V2; we then get 
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Determination of the z parameters: (a) finding z11 and z21 (b) finding z12 and z22. 

Z11=V1/I1, Z21=V2/I1 

We obtain z12 and z22 by connecting a voltage V2 (or a current source I2) to port 2 with port 1 open-circuited as 

in Figure 4) and finding I2 and V1; we then get 

Z12=V1/I2, Z21=V2/I2 

The above procedure provides us with a means of calculating or measuring the z parameters. Sometimes z11 and 

z22 are called driving-point impedances, while z21 and z12 are called transfer impedances. A driving-point 

impedance is the input impedance of a two-terminal (one-port) device. Thus, z11 is the input driving-point 

impedance with the output port open-circuited, while z22 is the output driving-point impedance with the input 

port open circuited. 

When z11 = z22, the two-port network is said to be symmetrical. This implies that the network has mirror like 

symmetry about some center line; that is, a line can be found that divides the network into two similar halves. 

When the two-port network is linear and has no dependent sources, the transfer impedances are equal (z12 = z21), 

and the two-port is said to be reciprocal. This means that if the points of excitation and response are 

interchanged, the transfer impedances remain the same. A two-port is reciprocal if interchanging an ideal voltage 

source at one port with an ideal ammeter at the other port gives the same ammeter reading. 

ADMITTANCE PARAMETERS: 
 

In the previous section we saw that impedance parameters may not exist for a two-port network. So there is a 

need for an alternative means of describing such a network. This need is met by the second set of parameters, 

which we obtain by expressing the terminal currents in terms of the terminal voltages. In either Figure 5(a) or 

(b), the terminal currents can be expressed in terms of the terminal voltages as 
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Determination of the y parameters: (a) finding y11 and y21, (b) finding y12 and y22. 

I1=Y11V1+Y12V2 

I2=Y21V1+Y22V2 

The Y terms are known as the admittance parameters (or, simply, y parameters) and have units of Siemens 

The values of the parameters can be determined by setting V1 = 0 (input port short-circuited) or V2 = 0 (output 

port short-circuited). Thus, 

 

 

 
 

Since the y parameters are obtained by short-circuiting the input or output port, they are also called the short- 

circuit admittance parameters. Specifically, 

y11 = Short-circuit input admittance 

y12 = Short-circuit transfer admittance from port 2 to port 1 

y21 = Short-circuit transfer admittance from port 1 to port 2 

y22 = Short-circuit output admittance 

We obtain y11 and y21 by connecting a current I1 to port 1 and short-circuiting port 2 and finding V1And I2. 

Similarly, we obtain y12 and y22 by connecting a current source I2 to port 2 and short-circuiting port 1 and 

finding I1 and V2, and then getting 

This procedure provides us with a means of calculating or measuring the y parameters. The impedance and 

admittance parameters are collectively referred to as admittance parameters 

 
HYBRID PARAMETERS: 

 
The z and y parameters of a two-port network do not always exist. So there is a need for developing another set 

of parameters. This third set of parameters is based on making V1 and I2 the dependent variables. Thus, we 

obtain 
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Or in matrix form, 
 

 
The h terms are known as the hybrid parameters (or, simply, h parameters) because they are a hybrid 

Combination of ratios. They are very useful for describing electronic devices such as transistors; it is much 

easier to measure experimentally the h parameters of such devices than to measure their z or y parameters. The 

hybrid parameters are as follows. 

It is evident that the parameters h11, h12, h21, and h22 represent impedance, a voltage gain, a current gain, and 

admittance, respectively. This is why they are called the hybrid parameters. To be specific, 

h11 = Short-circuit input impedance 

h12 = Open-circuit reverse voltage gain 

h21 = Short-circuit forward current gain 

h22 = Open-circuit output admittance 

 
The procedure for calculating the h parameters is similar to that used for the z or y parameters. We apply a 

voltage or current source to the appropriate port, short-circuit or open-circuit the other port, depending on the 

parameter of interest, and perform regular circuit analysis. 
 

TRANSMISSION PARAMETERS: 

 

 

Since there are no restrictions on which terminal voltages and currents should be considered independent and 

which should be dependent variables, we expect to be able to generate many sets of parameters. Another set of 

parameters relates the variables at the input port to those at the output port. 

 

 

 
Thus, 

 

 

 
The above Equations are relating the input variables (V1 and I1) to the output variables (V2 and −I2). Notice that 

in computing the transmission parameters, −I2 is used rather than I2, because the current is considered to be 
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leaving the network, as shown in Figure 6. This is done merely for conventional reasons; when you cascade two- 

ports (output to input), it is most logical to think of I2 as leaving the two-port. It is also customary in the power − 

industry to consider I2 as leaving the two-port. 

 

Terminal variables used to define the ABCD parameters. 

The two-port parameters in above equations provide a measure of how a circuit transmits voltage and current 

from a source to a load. They are useful in the analysis of transmission lines (such as cable and fiber) because 

they express sending-end variables (V1 and I1) in terms of the receiving-end variables (V2 and −I2). For this 

reason, they are called transmission parameters. They are also known as ABCD parameters. They are used in the 

design of telephone systems, microwave networks, and radars. 

The transmission parameters are determined as 
 

 
Thus, the transmission parameters are called, specifically, 

A = Open-circuit voltage ratio 

B = Negative short-circuit transfer impedance 

C = Open-circuit transfer admittance 

D = Negative short-circuit current ratio 

A and D are dimensionless, B is in ohms, and C is in Siemens. Since the transmission parameters provide a 

direct relationship between input and output variables, they are very useful in cascaded networks. 

Condition of symmetry: 

A two port network is said to be symmetrical if the ports can be interchanged without port voltages and currents 

Condition of reciprocity: 

A two port network is said to be reciprocal, if the rate of excitation to response is invariant to an interchange of 

the position of the excitation and response in the network. Network containing resistors, capacitors and inductors 

are generally reciprocal 
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Condition for reciprocity and symmetry in two port parameters: 

In Z parameters a network is termed to be reciprocal if the ratio of the response to the excitation remains 

unchanged even if the positions of the response as well as the excitation are interchanged. 

A two port network is said to be symmetrical it the input and the output port can be interchanged without 

altering the port voltages or currents. 

 
Parameter Condition for reciprocity Condition for symmetry 

Z 
Z 

Y 12 21 
Z 

Y 22 11 

Y 
Y 

12 21 
Y 

11 22 

h 
h h 

11 21 
h h 

11 21 

ABCD AD - BC = 1 A =  D 

 
 

Interconnecting Two-Port Networks: 

Two-port networks may be interconnected in various configurations, such as series, parallel, or cascade 

connection, resulting in new two-port networks. For each configuration, certain set of parameters may be more 

useful than others to describe the network. A series connection of two two-port networks a and b with open- 

circuit impedance parameters Za and Zb, respectively. In this configuration, we use the Z-parameters since 

they are combined as a series connection of two impedances. 

 
 

 

The Z-parameters of the series connection are Z 11= Z11A + Z11B 

Or in the matrix form [Z]=[ZA]+[ZB] 

 
Parallel Connection 

[Y] = [YA] + [YB] 

 
Cascade Connection 
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RELATIONSHIPS BETWEEN PARAMETERS: 

Since the six sets of parameters relate the same input   and output terminal variables of the same two-port 

network, they should be interrelated. If two sets of parameters exist, we can relate one set to the other set. Let us 

demonstrate the process with two examples. 

Given the z parameters, let us obtain the y parameters. 
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FILTERS 
 

PASSIVE FILTERS: 

Frequency-selective or filter circuits pass to the output only those input signals that are in a desired range of 

frequencies (called pass band). The amplitude of signals outside this range of frequencies (called stop band) is 

reduced (ideally reduced to zero). Typically in these circuits, the input and output currents are kept to a small 

value and as such, the current transfer function is not an important parameter. The main parameter is the voltage 

transfer function in the frequency domain, Hv (jω) = Vo/Vi. As Hv (jω) is complex number, it has both a 

magnitude and a phase, filters in general introduce a phase difference between input and output signals. To 

minimize the number of subscripts, hereafter, we will drop subscript v of Hv. Furthermore, we concentrate on 

the ‖open-loop‖ transfer functions, Hvo, and denote this simply by H(jω). 

 

Low-Pass Filters: 

An ideal low-pass filter‘s transfer function is shown. The frequency between the pass- and-stop bands is called 

the cut-off frequency (ωc). All of the signals with frequencies below ωc are transmitted and all other signals are 

stopped. 

In practical filters, pass and stop bands are not clearly defined, |H(jω)| varies continuously from its maximum 

toward zero. The cut-off frequency is, therefore, defined as the frequency at which |H(jω)| is reduced to 1/√2 

=0.7 of its maximum value. This corresponds to signal power being reduced by 1/2 as P 𝖺 V 2. 

 

Band-pass filters: 

A band pass filter allows signals with a range of frequencies (pass band) to pass through and attenuates signals 

with frequencies outside this range. 

often termed as design impedance or nominal impedance of the constant k-filter. 
 

 

 

 
Constant – K Low Pass Filter: 

 

A network, either T or \[\pi\], is said to be of the constant-k type if Z1 and Z2 of the network satisfy the relation 

 

Z1Z2 = k
2
 

 

Where Z1 and Z2 are impedance in the T and [pi] sections as shown in Fig. Equation 17.20 states that Z1 and Z2 
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as 

Z1 = -4Z2 at cut-off frequency, the pass band lies between the frequencies at which Z1 = 0, and Z1=-4Z2. 

All the frequencies above ƒc lie in a stop or attenuation band 

The characteristic impedance of a \[\pi\]-network is given by 

Constant K-High Pass Filter: 

Constant K-high pass filter can be obtained by changing the positions of series and shunt arms of the networks 

 

The constant k, T or \[\pi\] type filter is also known as the prototype because other more complex networks can 

be derived from it. Where Z1 = jωL and Z2 = 1/jωC. Hence Z1Z2= \[{L \over C}={k^2}\] which is independent 

of frequency 

The pass band can be determined graphically. The reactances of Z1 and 4Z2 will vary with frequency as drawn 

in Fig.30.2. The cut-off frequency at the intersection of the curves Z1 and 4Z2 is indicated as ƒc. On the X-axis 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

shown in Fig.30.1. The prototype high pass filters are shown in Fig.30.5, where Z1 =-j/ωC and Z2 = jωL. 
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Again, it can be observed that the product of Z1 and Z2 is independent of frequency, and the filter design obtained will 

be of the constant k type. The plot of characteristic impedance with respect to frequency is shown 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m-Derived T-Section: 

 
It is clear from previous chapter Figs 30.3 & 30.7 that the attenuation is not sharp in the stop band for k-type 

filters. The characteristic impedance, Z0 is a function of frequency and varies widely in the transmission band. 

Attenuation can be increased in the stop band by using ladder section, i.e. by connecting two or more identical 

sections. In order to join the filter sections, it would be necessary that their characteristic impedance be equal to 

each other at all frequencies. If their characteristic impedances match at all frequencies, they would also have the 

same pass band. However, cascading is not a proper solution from a practical point of view. This is because 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

practical elements have a certain resistance, which gives rise to attenuation in the pass band also. Therefore, any 

attempt to increase attenuation in stop band by cascading also results in an increase of ‗a‘in the pass band. If the 

constant k section is regarded as the prototype, it is possible to design a filter to have rapid attenuation in the stop 

band, and the same characteristic impedance as the prototype at all frequencies. Such a filter is called m-derived 

filter. Suppose a prototype T-network shown in Fig.31.1 (a) has the series arm modified as shown in Fig.31.1 

(b), where m is a constant. Equating the characteristic impedance of the networks in us has 
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Z0T = Z0T 

 

Where Z0T‘ is the characteristic impedance of the modified (m-derived) T-network. 

 
Thus m-derived section can be obtained from the prototype by modifying its series and shunt arms. The same 

technique can be applied to \[\pi\] section network. Suppose a prototype p-network shown in Fig.31.3 (a) has the 

shunt arm modified as shown in Fig.31.3 (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The characteristic impedances of the prototype and its modified sections have to be equal for matching. 
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The characteristic impedance of the modified (m-derived) \[\pi\]-network 
 

 

impedance will be minimum or zero. Therefore, the output is zero and will correspond to infinite attenuation at 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The series arm of the m-derived \[\pi\] section is a parallel combination of mZ1 and 4mZ2/1-m

2
 

 

m-Derived Low Pass Filter: 

In Fig.31.5, both m-derived low pass T and \[\pi\] filter sections are shown. For the T-section shown Fig.31.5 

 

 
(a) The shunt arm is to be chosen so that it is resonant at some frequency ƒx above cut-off frequency ƒc its 
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this particular frequency. 
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The variation of attenuation for a low pass m-derived section can be verified 

 

 

 
 

 

 
 

 

 

 
 

 

 

m-derived High Pass Filter: 

 

 
 

If the shunt arm in T-section is series resonant, it offers minimum or zero impedance. Therefore, the output is 

zero and, thus, at resonance frequency or the frequency corresponds to infinite attenuation. 

 

 

 

 

 

 

 

 

 

 

 

 

 
the m-derived \[\pi\]-section, the resonant circuit is constituted by the series arm inductance and capacitance 
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