KIIT POLYTECHNIC, BHUBANESWAR

LESSON PLAN

Session (2022-2023)

Discipline:	Semester:	Name of the Teaching Faculty:
Mechanical	3 rd , Winter/2022	Abhijit Samant
Engineering		Lecturer
		Email ID: abhijit.samantfme@kp.kiit.ac.in
Subject:	No. of	Start Date: 14/09/2022
Thermal Engineering-I,	Days/Week: 04	End Date: 21/01/2023
Theory-4		

Week	Class Day	Theory Topics
	1st	Define Thermodynamics. Define System, surroundings and
		boundary. Explain open closed and isolated system.
	2nd	Define Intensive and extensive properties. Differentiate
		between homogeneous and heterogeneous system.
1st	3rd	Define Microscopic and macroscopic approach of
		thermodynamics. Explain Continuum Approach, Quasi-static process
	4th	Thermodynamic properties of a system (Pressure, volume,
	Tui	temperature and units of measurement).
	1st	Define thermodynamic State, path, process and cycle.
	2nd	Explain Thermodynamic equilibrium i.e. thermal mechanical
2nd	2110	and chemical equilibrium.
	3rd	Conceptual explanation of energy and its sources.
	4th	Explain work and heat, their relation, units and Work transfer,
	1st	Derive the formula for the work done in a closed system.
	2nd	Explain Mechanical equivalence of heat and differentiate
3rd	2110	between heat and work.
	3rd	Assignment evaluation /class test
	4th	Numerical
4th	1st 2nd	State and explain Zeroth law and First law of
		thermodynamics. Limitation of First law.
		Application of first law for flow process. Derivation of steady flow energy equation.
	3rd	Application of SFEE in Nozzle Turbine and Compressor.
	4th	Define Thermal reservoir. Concept of heat engine, heat pump

		and refrigerator.
5th	1st	Statement of Second law of thermodynamics (Clausius and Kelvin Planck Statement)
	2nd	Application of second law in heat engine, and determination of efficiency.
	3rd	Application of second law in Refrigerator, and determine the Coefficient Of Performance.
	4th	Application of second law in Heat Pump, and determine the Coefficient Of Performance.
	1st	Review Class
6th	2nd	Classroom Problems
οιη	3rd	Classroom Problems
	4th	Assignment evaluation / class test
	1st	Explain Laws of Perfect gas, Boyle's law, Charle's law, Avogadro's law,
7th	2nd	Dalton's law of Partial pressure, Gay-Lussac law, General gas equation
	3rd	Explain Characteristic gas constant, Universal gas constant and define the relation between them.
	4th	Define Enthalpy, Entropy, and Internal Energy of a Thermodynamic system.
	1st	Explain specific heat of gas (Cp and Cv) Relation between Cp & Cv
8th	2nd	Derive the work done during a non- flow process i.e. Isochoric, Isobaric.
	3rd	Application of first law in Isothermal, Isentropic and Polytrophic Process.
	4th	Assignment evaluation / class test
	1st	Classroom Problems
0.1	2nd	Classroom Problems
9th	3rd	Define & classify I.C engine
	4th	Terminology of I.C Engine
	1st	Explain the working principle of 4-stroke S.I engine.
104	2nd	Explain the working principle of 4-stroke C.I engine.
10th	3rd	Explain the working principle of 2-stroke S.I engine.
	4th	Explain the working principle of 2-stroke C.I engine.
	1st	Differentiate between S.I and C.I engine.
1166	2nd	Differentiate between 2-stroke & 4- stroke engine.
11th	3rd	Review class
	4th	Assignment evaluation / class test
12th	1st	Explain the Carnot cycle with P-V and T-S diagram and derive the process involved in Carnot cycle.
	2nd	Derive the efficiency of Carnot cycle.

	3rd 4th	Explain the Otto cycle with P-V and T-S diagram and derive the process involved in Otto cycle. Derive the efficiency of Otto cycle.
13th	1st	Explain the Diesel cycle with P-V and T-S diagram and derive the process involved in Diesel cycle.
	2nd	Derive the efficiency of Diesel cycle.
	3rd	Explain the Dual cycle with P-V and T-S diagram and derive the process involved in Dual cycle.
	4th	Derive the efficiency of Dual cycle.
14th	1st	Classroom Problems
	2nd	Classroom Problems
	3rd	Define Fuel and its types. Explain application of fuel.
	4th	Define Heating value of fuel.
15th	1st	Explain Calorific value and Quality of I C engine fuel.
	2nd	Discussion on Previous year question paper
	3rd	Discussion on Previous year question paper
	4th	Discussion on Previous year question paper

Signature of Concerned teacher