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CHAPTER#1

1. Basic Concept of Control System
Control Engineering is concerned with techniques that are used to solve the following six
problems in the most efficient manner possible.

(a)The identification problem :to measure the variables and convert data for analysis.

(b)The representation problem:to describe a system by an analytical form or mathematical model
(c)The solution problem:to determine the above system model response.

(d)The stability problem:general qualitative analysis of the system

(e)The design problem: modification of an existing system or develop a new one

() The optimization problem: from a variety of design to choose the best.

The two basic approaches to solve these six problems are conventional and modern approach. The
electrical oriented conventional approach is based on complex function theory. The modern
approach has mechanical orientation and based on the state variable theory.

Therefore, control engineering is not limited to any engineering discipline but is equally
applicable to aeronautical, chemical, mechanical, environmental, civil and electrical engineering.
For example, a control system often includes electrical, mechanical and chemical components.
Furthermore, as the understanding of the dynamics of business, social and political systems
increases; the ability to control these systems will also increase.

1.1.Basic terminologies in control system

System: A combination or arrangement of a number of different physical components to form
a whole unit such that that combining unit performs to achieve a certain goal.

Control: The action to command, direct or regulate a system.

Plant or process: The part or component of a system that is required to be controlled.
Input: Itis the signal or excitation supplied to a control system.

Output: It is the actual response obtained from the control system.

Controller: The part or component of a system that controls the plant.

Disturbances: The signal that has adverse effect on the performance of a control system.

Control system: A system that can command, direct or regulate itself or another system to
achieve a certain goal.

Automation: The control of a process by automatic means

Control System: An interconnection of components forming a system configuration that will
provide a desired response.

Actuator: It is the device that causes the process to provide the output. It is the device that
provides the motive power to the process.



Design: The process of conceiving or inventing the forms, parts, and details of system to
achieve a specified purpose.
Simulation: A model of a system that is used to investigate the behavior of a system by

utilizing actual input signals.

Optimization: The adjustment of the parameters to achieve the most favorable or
advantageous design.

Feedback Signal: A measure of the output of the system used for feedback to control the
system.

Negative feedback: The output signal is feedback so that it subtracts from the input signal.

Block diagrams: Unidirectional, operational blocks that represent the transfer functions of
the elements of the system.

Signal Flow Graph (SFG): A diagram that consists of nodes connected by several directed
branches and that is a graphical representation of a set of linear relations.

Specifications: Statements that explicitly state what the device or product is to be and to do.
It is also defined as a set of prescribed performance criteria.

Open-loop control system: A system that utilizes a device to control the process without
using feedback. Thus the output has no effect upon the signal to the process.

Closed-loop feedback control system: A system that uses a measurement of the output and
compares it with the desired output.

Regulator: The control system where the desired values of the controlled outputs are more or
less fixed and the main problem is to reject disturbance effects.

Servo system: The control system where the outputs are mechanical quantities like
acceleration, velocity or position.

Stability: It is a notion that describes whether the system will be able to follow the input
command. In a non-rigorous sense, a system is said to be unstable if its output is out of
control or increases without bound.

Multivariable Control System: A system with more than one input variable or more than
one output variable.

Trade-off: The result of making a judgment about how much compromise must be made
between conflicting criteria.

1.2. Classification
1.2.1. Natural control system and Man-made control system:

Natural control system: It is a control system that is created by nature, i.e. solar
system, digestive system of any animal, etc.

Man-made control system: It is a control system that is created by humans, i.e.
automobile, power plants etc.

1.2.2.  Automatic control system and Combinational control system:



1.2.3.

1.2.4.

1.2.5.

1.2.6.

1.2.7.

1.2.8.

1.2.9.

Automatic control system: It is a control system that is made by using basic theories
from mathematics and engineering. This system mainly has sensors, actuators and
responders.

Combinational control system: It is a control system that is a combination of natural
and man-made control systems, i.e. driving a car etc.

Time-variant control system and Time-invariant control system:

Time-variant control system: It is a control system where any one or more
parameters of the control system vary with time i.e. driving a vehicle.

Time-invariant control system: It is a control system where none of its parameters
vary with time i.e. control system made up of inductors, capacitors and resistors only.

Linear control system and Non-linear control system:

Linear control system: It is a control system that satisfies properties of homogeneity
and additive.

e Homogeneous property: f(x+y)=f(x)+f(y)

e Additive property: f(ax)=af(x)
Non-linear control system: It is a control system that does not satisfy properties of
homogeneity and additive, i.e. f(x)= X
Continuous-Time control system and Discrete-Time control system:

Continuous-Time control system: It is a control system where performances of all
of its parameters are function of time, i.e. armature type speed control of motor.

Discrete -Time control system: It is a control system where performances of all of
its parameters are function of discrete time i.e. microprocessor type speed control of
motor.

Deterministic control system and Stochastic control system:

Deterministic control system: It is a control system where its output is predictable
or repetitive for certain input signal or disturbance signal.

Stochastic control system:It is a control system where its output is unpredictable or
non-repetitive for certain input signal or disturbance signal.

Lumped-parameter control system and Distributed-parameter control system:

Lumped-parameter control system: It is a control system where its mathematical
model is represented by ordinary differential equations.

Distributed-parameter control system:It is a control system where its mathematical
model is represented by an electrical network that is a combination of resistors,
inductors and capacitors.

Single-input-single-output (SISO) control system and Multi-input-multi-output
(MIMO) control system:

SISO control system: It is a control system that has only one input and one output.

MIMO control system:It is a control system that has only more than one input and
more than one output.

Open-loop control system and Closed-loop control system:

Open-loop control system: It is a control system where its control action only
depends on input signal and does not depend on its output response.



Closed-loop control system:It is a control system where its control action depends
on both of its input signal and output response.

1.3. Open-loop control system and Closed-loop control system
1.3.1. Open-loop control system:

It is a control system where its control action only depends on input signal and does
not depend on its output response as shown in Fig.1.1.

control signal

u(t
Input o———| controller ® »| Plant p—» Output
rt) c(t)

Fig.1.1. An open-loop system
Examples: traffic signal, washing machine, bread toaster, etc.
Advantages:

Simple design and easy to construct
Economical

Easy for maintenance

Highly stable operation

Dis-advantages:

o Not accurate and reliable when input or system parameters are variable in
nature
o Recalibration of the parameters are required time to time
1.3.2. Closed-loop control system:

It is a control system where its control action depends on both of its input signal and
output response as shown in Fig.1.2.

Error signal control signal
Input u(t) - _ Output
r(t) Controller > Plant o(t)
Comparator
Feedback signal, b(t)
Feedback |«

Fig.1.2. A closed-loop system
Examples: automatic electric iron, missile launcher, speed control of DC motor, etc.
Advantages:

e More accurate operation than that of open-loop control system

o Can operate efficiently when input or system parameters are variable in
nature

Less nonlinearity effect of these systems on output response

High bandwidth of operation

There is facility of automation

Time to time recalibration of the parameters are not required

Dis-advantages:

o Complex design and difficult to construct



o Expensive than that of open-loop control system

o Complicate for maintenance

o Less stable operation than that of open-loop control system

1.3.3. Comparison between Open-loop and Closed-loop control systems:

It is a control system where its control action depends on both of its input signal and
output response.

Sl.
No. Open-loop control systems Closed-loop control systems
1 No feedback is given to the control system | A feedback is given to the control system
2 Cannot be intelligent Intelligent controlling action
There is no possibility of undesirable Clos_eq . loop _ control .|ntr0duces the
3 g . possibility — of  undesirable  system
system oscillation(hunting) e .
oscillation(hunting)
The output will not very for a constant | In the system the output may vary for a
4 input, provided the system parameters | constant input, depending upon the
remain unaltered feedback
System output variation due to variation in L L
: System output variation due to variation in
5 parameters of the system is greater and the .
- parameters of the system is less.
output very in an uncontrolled way
6 Error detection is not present Error detection is present
7 Small bandwidth Large bandwidth
8 More stable Less stable or prone to instability
9 Affected by non-linearities Not affected by non-linearities
10 Very sensitive in nature Less sensitive to disturbances
11 Simple design Complex design
12 Cheap Costly
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1.4. Servomechanism

It is the feedback unit used in a control system. In this system, the control variable is
a mechanical signal such as position, velocity or acceleration. Here, the output signal
is directly fed to the comparator as the feedback signal, b(t) of the closed-loop control
system. This type of system is used where both the command and output signals are
mechanical in nature. A position control system as shown in Fig.1.3 is a simple
example of this type mechanism. The block diagram of the servomechanism of an
automatic steering system is shown in Fig.1.4.

Error
voltage Amp'
Refere_nce o, 1+ Actual
position - e sosit
] position

Output
Input otentiometer

potentiometer

Fig.1.3. Schematic diagram of a servomechanism

+ .
Refergnce Control Amplifier _Dr|ve Wheels Output
position valve linkage c(t)

Fig.1.4. Block diagram of a servomechanism

Examples:

Missile launcher

Machine tool position control
Power steering for an automobile
Roll stabilization in ships, etc.

1.5.Regulators

It is also a feedback unit used in a control system like servomechanism. But, the
output is kept constant at its desired value. The schematic diagram of a regulating
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system is shown in Fig.1.5. Its corresponding simplified block diagram model is
shown in Fig.1.6.

Controlled signal

y \
N
To load
Stabilizing voltage
Amplifier
A
Feeq_back
' Eror | Controller
Isolation Reference
Transformer =
Fig.1.5. Schematic diagram of a regulating system
+ Error
Reference Controllerf—s] Serv0 »| Tap » Output
position motor c(t)
Load voltage
sensing
Fig.1.6. Block diagram of a regulating system
Examples:

e Temperature regulator
e Speed governor
e Frequency regulators, etc.
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CHAPTER#?2

2. Control System Dynamics
2.1. Definition: It is the study of characteristics behaviour of dynamic system, i.e.
(a) Differential equation

i. First-order systems
ii. Second-order systems
(b) System transfer function: Laplace transform

2.2.Laplace Transform: Laplace transforms convert differential equations into algebraic
equations. They are related to frequency response.

0

L{x(t)} =X (s)= [ x(tye dt 2.1)
0
L{x(t)}=X (s):jx(t)e‘s‘dt (2.2)
0
Time-domain 7 Sine sin ot w
Laplace domain 2 2
No. | Function x(t)= STta
X(s)= L{x()}
LX)} 8 Cosine cos ot S
2 2
1 Delay 3(t-1) g™ ST+ao
2 Unit impulse | 3(t) 1 9 Hyperbolic sinh at a
sine 2 o2
. 1
3 Unit step u(t) —
S 10 | Hyperbolic | cosh at S
cosine 2 2
1 S -«
4 Ramp t 5
S
11 | Exporentiall | a-<t gin wt 10
Exponential | 1 y decaying (s+a)’ +o°
5 decay € Sto sine wave
12 | Exponentiall | -t g it S+a
6 Exponerr]]tlal (1 et ) a y dt?caylng 5+ a)2 P
pproac s(s+a) cosine wave

2.3.Solution of system dynamics in Laplace form: Laplace transforms can be solved using
partial fraction method.
A system is usually represented by following dynamic equation.

N(s) =2l .3

B(s)

The factor of denominator, B(s) is represented by following forms,

~—

i. Unrepeated factors
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ii. Repeated factors
iii. Unrepeated complex factors

(i) Unrepeated factors

N(s) __A B
(s+a)(s+b) s+a s+b (2.4)
_A(s+b)+B(s+a)
~ (s+a)(s+b)

By equating both sides, determine A and B.

Example 2.1:
Expand the following equation of Laplacetransform in terms of its partial fractionsand obtain
its time-domain response.

2
V()=
(s+1(s+2)
Solution:
The following equation in Laplacetransform is expandedwith its partial fractions as follows.
2s A N B
(s+D(s+2) (s+1) (s+2)
2s _ A(s+2)+B(s+1)

= =
(s+D(s+2) (s+1)(s+2)
By equating both sides, A and B are determined as A=-2,B = 4. Therefore,

Y(S)Z—L-}—i
(s+1) (s+2)

Taking Laplace inverse of above equation,
y(t)=-2e"+4e™*

(if) Unrepeated factors
N(s) A . B A+B(s+a)

(s+a)? (s+a)® (s+a) (s+a)? 25)

By equating both sides, determine A and B.

Example 2.2:
Expand the following equation of Laplacetransform in terms of its partial fractionsand obtain
its time-domain response.

2
Y=
(s+D)°(s+2)
Solution:
The following equation in Laplacetransform is expandedwith its partial fractions as follows.
25 A B C

(5+17(5+2) (5417 (541 (5+2)

By equating both sides, A and B are determined as A=-2,B = 4. Therefore,
Y(s)=— 2 - 4 3 4

(s+1)° (s+1) (s+2)

Taking Laplace inverse of above equation,

y(t)=-2te™" +4e" —4e™
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(iii) Complex factors: They contain conjugate pairs in the denominator.
N(s) _ As+B

(s+a)(s+3) (s+a)’+p°

(2.6)

By equating both sides, determine A and B.

Example 2.3:
Expand the following equation of Laplacetransform in terms of its partial fractionsand obtain
its time-domain response.

10 R LS
(s+1+ j)(s+1-})
Solution:
The following equation in Laplacetransform is expandedwith its partial fractions as follows.
2 1
Y(8) =
(s+D)"+1 (s+1)°+1

Taking Laplace inverse of above equation,
y(t) =2e " cost+e " sint

2.4. Initial value theorem:
limyol-lim[sY (s)] @7
t—0

S0

Example 2.4:
Determine the initial value of the time-domain response of the following equation using the
initial-value theorem.

V=t
(s+1+ j)(s+1-))
Solution:
Solution of above equation,
y(t) =2e " cost+e " sint
Applying initial value theorem,
. s(2s+1)
lim . ==
som (SH1+ J)(s+1-])
2.5.Final value theorem:
lim(y©)=lim[sY ()] (2.8)
o0 s—0

Example 2.5:
Determine the initial value of the time-domain response of the following equation using the
initial-value theorem.

2s
YO yie)

Solution:
Solution of above equation,



y(t)=-2te™ +4e" —4e™

Applying final value theorem,
. s(2s+1)

lim : =
som (S+1+ J)(s+1-j)

15
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CHAPTER#3

3. Transfer Function
3.1. Definition: It is the ratio of Laplace transform of output signal to Laplace transform of input
signal assuming all the initial conditions to be zero, i.e.

Let, there is a given system with input r(t) and output c(t) as shown in Fig.3.1 (a), then its
Laplace domain is shown in Fig.3.1 (b). Here, input and output are R(s) and C(s) respectively.

rt) e——s gt} p—> clt) Rs) — Gis) }—> C(s
(@) (b)
(©
Fig.3.1. (a) A system in time domain, (b) a system in frequency domainand (c) transfer function with differential
operator

G(s) is the transfer function of the system. It can be mathematically represented as follows.

G(s) :w Equation Section (Next)(3.1)
R(s

Example 3.1: Determine the transfer function of the system shown inFig.3.2.

—AMA—T™

R L

Vi(t) c = Vo(t)

Fig.3.2. a system in time domain

Solution:
Fig.3.1 is redrawn in frequency domain as shown in Fig.3.2.

—AMA—YY
R Ls
Vi(s) 1 (s)\‘\ 1/Cs —— Vo (S)
- H

Fig.3.2. a system in frequency domain



Applying KVL to loop-1 of the Fig.3.2

Vi(s):£R+Ls+Cijl(s)

S

Applying KVL to loop-2 of the Fig.3.2
Fromeq (2.12),

Now, using eq (2.13) in eq (2.10),

Vi (s) :(R+ Ls+é)CsVo(s)

V, (s) 1 1
= = = 2
Vi (s) [R+Ls+i](:s LCs? +RCs+1

Cs

Then transfer function of the given system is

1
 LCs?+RCs+1

G(s)

3.2.General Form of Transfer Function

G(S): K(S_Zl)(S—ZZ)...(S—Zm):K L (S_Zi)

(s=p)(s—p,).(s—p,) ﬁ(S—Zj)

Where, Z,, Z,...Z,, are called zeros and p;, p,...p, are called poles.

Number of poles n will always be greater than the number of zeros m

Example 3.2:
Obtain the pole-zero map of the following transfer function.

o) = (s=2)(s+2+ jA)(s+2— j4)
 (s=3)(s—4)(s=5)(s+1+ j5)(s+1— j5)

Solution:
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(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

3.7)

The following equation in Laplacetransform is expandedwith its partial fractions as follows.

Zeros Poles

=2 5=3

s=-2-j4 | s=4

s=-2+j4 | s=5
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s=-1-j5

s=-1+j5

Fig.3.3. pole-zero map

3.3.Properties of Transfer function:

Zero initial condition
It is same as Laplace transform of its impulse response

Replacing ‘s’ by % in the transfer function, the differential equation can be obtained
Poles and zeros can be obtained from the transfer function

Stability can be known
Can be applicable to linear system only

3.4. Advantages of Transfer function:

It is a mathematical model and gain of the system
Replacing ‘s’ by % in the transfer function, the differential equation can be obtained
Poles and zeros can be obtained from the transfer function

Stability can be known
Impulse response can be found

3.5. Disadvantages of Transfer function:

Applicable only to linear system
Not applicable if initial condition cannot be neglected
It gives no information about the actual structure of a physical system
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CHAPTER#4

4. Description of physical system
4.1.Components of a mechanical system: Mechanical systems are of two types, i.e. (i)
translational mechanical system and (ii) rotational mechanical system.
4.1.1. Translational mechanical system

There are three basic elements in a translational mechanical system, i.e. (a) mass, (b)
spring and (c) damper.

(@) Mass: A mass is denoted by M. If a force f is applied on it and it displays
2
distance x, then f =M % as shown in Fig.4.1.

X

Fig.4.1. Force applied on a mass with displacement in one direction

If a force f is applied on a massM and it displays distance x;in the direction of f and
2

d%, d?x
distance X, in the opposite direction, then f =M [ dt)z(l - dtzzj as shown in Fig.4.2.

X~ =Xy

M s f

Fig.4.2. Force applied on a mass with displacement two directions

(b) Spring: A spring is denoted by K. If a force f is applied on it and it displays
distance x, then f =Kx as shown in Fig.4.3.

X

Fig.4.3. Force applied on a spring with displacement in one direction

If a force f is applied on a springK and it displays distance x;in the direction of f and
distance x; in the opposite direction, then f =K (x1 - xz) as shown in Fig.4.4.
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X, <] X,

K

i_/'Y'Y'Y'\_*_> f
Fig.4.4. Force applied on a spring with displacement in two directions

(c) Damper: A damper is denoted by D. If a force f is applied on it and it displays

distance x, then f = D% as shown in Fig.4.5.

b x

A=

D

Fig.4.5. Force applied on a damper with displacement in one direction

If a force f is applied on a damperD and it displays distance x;in the direction of f and

distance x; in the opposite direction, then f = D[d—xi—%J as shown in Fig.4.6.

dt
X, =X
[E f
D

Fig.4.6. Force applied on a damper with displacement in two directions

4.1.2. Rotational mechanical system

There are three basic elements in a Rotational mechanical system, i.e. (a) inertia, (b)

spring and (c) damper.

(@) Inertia: A body with aninertia is denoted by J. If a torqueT is applied on it and it
displays distance6, then T =J % . IfatorqueT is applied on a body with inertia
J and it displays distance 6; in the direction of T and distance 6. in the opposite

d2g, dzezj

dt*>  dt?

(b) Spring: A spring is denoted by K. If a torqueT is applied on it and it displays
distance®, then T = K@. If a torqueT is applied on a body with inertia J and it
displays distance ©; in the direction of T and distance ©, in the opposite
direction, then T =K (6, -6,).

(c) Damper: A damper is denoted by D. If a torqueT is applied on it and it displays

direction, then T =1J [

distance®, then T = D?j—f. If a torqueT is applied on a body with inertia J and it
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displays distance ©; in the direction of T and distance ©, in the opposite

direction, then T =D %—% .
dt dt

4.2. Components of an electrical system: There are three basic elements in an electrical system,
i.e. (a) resistor (R), (b) inductor(L) and (c) capacitor (C). Electrical systems are of two types,
i.e. (i) voltage source electrical system and (ii) current source electrical system.
4.2.1. Voltage source electrical system: Ifi is the current through a resistor(Fig.4.7) and v

4.2.2.

4.2.3.

is the voltage drop in it, then v=Ri.

If i is the current through an inductor (Fig.4.7) and v is the voltage developed in it,

then v= Lﬂ.
dt
If i is the current through a capacitor(Fig.4.7) and v is the voltage developed in it,
then v:ijidt.
C
R L c

|
|
|
|
T__
|

Fig.4.7. Current and voltage shown in resistor, inductor and capacitor

Current source electrical system:

If i is the current through a resistor and v is the voltage drop in it, then i =E'

If i is the current through an inductor and v is the voltage developed in it, then

i=Hvdt.

If i is the current through a capacitor and v is the voltage developed in it, then
i—cd.

dt
Work out problems:
Q.4.1. Find system transfer function betweenvoltage drop across the capacitanceand
input voltage in the followingRC circuit as shown in Fig.4.8.

Fig.4.8.
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Solution

Voltage across resistance, €, (t) =i(t)R

Voltage across capacitance, €. (t) = %J‘ i(t)dt
. 1.
Total voltage drop, €, =€, +e. =i(t)R +EI i(t)dt

Laplace transform of above equation, E,(S) = 1(s) [ R+ Cij
s

System transfer function betweenvoltage drop across the capacitanceand input
E.(s) 1 1

voltage, = =
E/(s) RCs+1 7s+1

where, RC =7 is the time-constant

Q.4.2. Find system transfer function betweenfunction between the inductance
currentto the source currentin the followingRL circuit as shown in Fig.4.9.

i

i L
R

t® e yg* y

Y

Fig.4.9.

Voltage across the Resistance, e(t) =i,R =i, =

Voltage across the Inductance, e(t) =L %[L =i, = %J.e(t)dt

e(t)
R

e 1
Total current, i, =i, +i, = ?+Ije(t)dt
Laplace transform of the current source,
1 1 E
I.(s)=E(s)| —+— |and I, (s) =—
=) § o a1 -
Transfer function between the inductance current to the source current,
() 1 1

1,(s) £s+1_ 7s+1
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L. .
wheret = E is the time-constant

Q.4.3. Find system transfer function betweenfunction between the capacitance
voltageto the source voltage in the followingRLC circuit as shown in Fig.4.10.

Fig.4.10.

Voltage across the Resistance, €(t) =IR

di
Voltage across the Inductance, e _(t) =L o

Voltage across thecapacitance, €. (t) = %J. idt
: di 1.
Total voltage, e(t)=iR+L—+—idt
ge. e(t) atec)

Laplace transform of the voltage source, E(S) = I (S) [R +Ls+ CLJ
s

Transfer function between capacitance voltage and source voltage
Ec(s) _ 1 ?

— n

- 2 2
E(s) CS(RJFLSJFC:LS) (S +2§a)ns+a)n)

where o, -1 and ¢ R

JLe , [L
C

Q.4.4.Find the transfer function of the following Spring-mass-damperas shown
in Fig.4.11.

Fig.4.11.
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Solution
X(s) 1 3 1
F(s) ms®+cs+k m(32+2§a)ns+a)nz)

4.3. Analogous system: Fig.4.12 shows a translational mechanical system, a rotational control
system and a voltage-source electrical system.

MN—™M
R L
v
i(t)
S )
(@)
[ J
< Z

D
(b)
/74
D K
I
" T
1 X
f
(c)
Fig.4.12. (a) a voltage-source electrical system,(b) a translational mechanical system and (c) a rotational control
system
From Fig4.12 (a), (b) and (c), we have
d’qg _dq 1
L—+R—+=q=v(t
dt? gt co (®)
d’0 _do : :
J F-F DEJF KO=T  Equation Chapter 8 Section 0(4.1)

2
MO M, k=t
a’ o dt

Where,
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q :Iidt (4.2)

The solutions for all the above three equations given by eq (4.2) are same. Therefore, the
above shown three figures are analogous to each other. There are two important types of
analogous systems, i.e. force-voltage (f-v) analogy and force-current analogy. From eq (4.2),

f-v analogy can be drawn as follows.

Translational Rotational Electrical
Force (f) Torque (T) Voltage (v)
Mass (M) Inertia (J) Inductance (L)
Damper (D) Damper (D) Resistance (R)
Spring (K) Spring (K) Elastance (1/C)

Displacement (x)

Displacement (6)

Charge (q)

Velocity (u) = X

Velocity (u) = 6

Current (i) = g

Similarly, f-i analogy that can be obtainedfrom eq (4.1), can be drawn as follows.

Translational Rotational Electrical
Force (f) Torque (T) Current (i)
Mass (M) Inertia (J) Capacitance (C)
Damper (D) Damper (D) Conductance (1/R)
Spring (K) Spring (K) Reciprocal of Inductance (1/L)

Displacement (x)

Displacement (©)

Flux linkage (y)

Velocity (u) = X

Velocity (u) = 6

Voltage (V) = v

4.4, Mathematical model of armature controlled DC motor: The armature control type speed
control system of a DC motor is shown in Fig.4.6. The following components are used in this

system.

R.=resistance of armature

L.=inductance of armature winding

i;=armature current

l+=field current

E.=applied armature voltage

E,=back emf

Tm=torque developed by motor

©=angular displacement of motor shaft

J=equivalent moment of inertia and load referred to motor shaft

f=equivalent viscous friction coefficient of motor and load referred to motor shaft
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+ La

If
(constant)

Fig.4.6. Schematic diagram of armature control type speed control system of a DC motor

The air-gap flux ¢is proportional of the field current i.e.
¢=Kily (4.3)

The torque T, developed by the motor is proportional to the product of armature current and
air gap fluxi.e.

Tmzlef Ifia (44)

In armature-controlled D.C. motor,the field current is kept constant,so that eq(4.4) can be
written as follows.

Tn=Ki (4.5)

The motor back emf being proportional to speed is given as follows.

E,=K, (‘Z—f) (4.6)

The differential equation of the armature circuit is

L, (%‘j+ R,i, +E, = E, 4.7)

The torque equation is
o[ L0, ¢(d0) ¢ i, 48
e + )" m T la (4.8)

Taking the Laplace transforms of equations (4.6), (4.7) and (4.8), assuming zero initial
conditions, we get

£y (5)=5Ko0 (5) 4.9)
(sLa#Ry) 1, (5) = Eq () Eo (5) (4.10)

(523 +5sf)O(s) =T, (s) = K, 1, (4.11)
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From eq(4.9) to (4.11) the transfer function of the system is obtained as,

_96) _ K, 4.12
6 (s) Ea(5) s[(Ry+sLy)(sd+ f)+KK, ] (.12

Eq(4.12) can be rewritten as

Kl
_0(s) | (Ry+sLy)(sI+f) 1
o= Ea(s) 1+ KKy s (4.13)

(Rq+5Ly)(sd+f)

The block diagram that is constructed from eq (4.13) is shown in Fig.4.7.

£ + 1 o« _ 1 o) 1
a(s) sLr [ | "l st "1 s s

En(s)

Ky

Fig.4.7. Block diagram of armature control type speed control system of a DC motor

The armature circuit inductance L, is usually negligible. Therefore, eq(4.13) can be
simplifiedas follows.

@:sz(ﬁja +s{f +ﬁj (4.14)

Ea(s) Ra a

KK, ). . . .
The term {f +;—bj|nd|cates that the back emf of the motor effectively increases the
a

viscous friction of the system. Let,

KK
L KKy

frof (4.15)

Ra

Where f'be the effective viscous friction coefficient. The transfer function given by eq(4.15)
may be written in the following form.

0(s) __ Ky
E.(s) s(st+1) (4.18)

Here K, = Rth

a

= motor gain constant, and ¢ :%: motor time constant.Therefore, the motor

torque and back emf constant K, K, are interrelated.

4.5. Mathematical model of field controlled DC motor: The field control type speed control

system of a DC motor is shown in Fig.4.8. The following components are used in this system.

Rs=Field winding resistance
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Ls=inductance of field winding

l+=field current
e~=field control voltage
Tm=torque developed by motor
©=angular displacement of motor shaft
J=equivalent moment of inertia and load referred to motor shaft

f=equivalent viscous friction coefficient of motor and load referred to motor shaft

Vi
N\

la
‘ Ry (constant)

Ly

Fig.4.8. Block diagram of field control type speed control system of a DC motor

In field control motor the armature current is fed from a constant current source.The air-gap
flux @ is proportional of the field current i.e.

=Ky (4.17)
The torque Tm developed by the motor is proportional to the product of armature current and
air gap fluxi.e.

To=kKeli 1, =K1 (4.18)
The equation for the field circuit is

LR —E (4.19)
+ = :

f dt frf f

The torque equation is

d2o do

\]W'f' fE:Tm ZKtIf

(4.20)
Taking the Laplace transforms of equations (4.19) and (4.20) assuming zero initial conditions,
we get the following equations
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(Lis+R )1 (s)=E (s) (4.21)
and
(3% + 15)0(s) =T, (5) = K1 (5) (4.22)

From eq(4.21) and (4.22) the transfer function of the system is obtained as

6(s) K
G(s)= = L 4.23
(5) Ei(s) s(Ry+sL)(Js+T) “29
The transfer function given by eq(4.23) may be written in the following form.

9(5) Kt — Km (424)

E.(s) B s(Ls+Ry)(Is+ 1) s(sz+1)(st'+1)

K . L ) . -

Here K, = R tf = motor gain constant, and ¢ :R—f = time constant of field circuit and ¢’ =%
f f

= mechanical time constant.For small size motors field control is advantageous.The block

diagram that is constructed from eq (4.24) is shown in Fig.4.9.

1 K
Ed(s) | sL, +R, s(sd+f) ()

\ A

Fig.4.9. Block diagram of field control type speed control system of a DC motor
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CHAPTER#5

5. Block Diagram Algebra
5.1.Basic Definition in Block Diagram model:

Block diagram: It is the pictorial representation of the cause-and-response relationship
between input and output of a physical system.

Input e——>»| Block |—— Output R(s) M G > CO
(@) (b)
Fig.5.1. (a) A block diagram representation of a system and (b) A block diagram representation with gain of a
system
Output: The value of input multiplied by the gain of the system.
C(s)=G(s)R(s) (5.1)

Summing point: It is the component of a block diagram model at which two or more signals
can be added or subtracted. In Fig.15, inputs R(s) and B(s) have been given to a summing
point and its output signal is E(s). Here,

E(s)=R(s)-B(s) (5.2)

Forward path e——

Take-off point

‘.

R(s) Gals) F— C(s)

A

Gi(s)

Summing B(s)
point

H(s) -

-

g Feedback path

Fig.5.2. A block diagram representation of a systemshowing its different components

Take-off point: It is the component of a block diagram model at which a signal can be taken
directly and supplied to one or more points as shown in Fig.5.2.

Forward path: It is the direction of signal flow from input towards output.

Feedback path: It is the direction of signal flow from output towards input.
5.2. Developing Block Diagram model from mathematical model:

Let’s discuss this concept with the following example.

Example: A system is described by following mathematical equations. Find its corresponding
block diagram model.

X, = 3% +2X, +5X, (5.3)

X, =X +4X, +3X%, (5.4)



Xy = 2% + X, + X
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(5.5)

Example: Eq (5.3), (5.4) and (5.5) are combiningly results in the following block diagram

model.
X3(S)
xa(s) 2 x(s) s X1(S)
XZ(S) 2
XZ(_Sz 4 )'(Q(S) 1/s X2(S)
X3(s)
1/s X3(S)
X1(s) Joo

Fig.5.3. A block diagram representation of the above example
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?\:6 ﬁgle Configuration Equivalent Name
1 Rule 1 R(s)— Gi(s) » Gy(s) —>C(s) R(s)e—] G1(s)G2(s) —>=C(s) Cascade
> Gqfs)
2 | Rule2 R(s) —— (X)—*(S) R(s)—{ Gi(s}+Gfs) [—C(s) Parallel
Gfs)
R(s)— G(s) C(s) 50
S
3 Rule 3 £ R(s)— m —C(s) Loop
H(s)
R (o
R(s) ‘g‘ ‘z‘ C(s) (s) (s)
Associative
4 Rule 4 Law
Xo(s Xi(s
Xi(s)  Xals) 2(s) 1(s)
R(s) G(s) [—=C(s) | R(s)—| ©G(s) > C5) | Move take-
5 | Rule5 off point
X(s) X(s) 1/G(s) after a block
R(s) G(s) C(s) R(s Gls) —cCls) Move take-
6 Rule 6 off point
before a
X(s) — X(s)=—Gls) block
R(s) — G(s) C(s)
R(s) G(s) —C(s) Move
summing-
7 | Rule? G(s) point point
X(s) t after a block
X(s)
R(s)-—(»%— G(s) —»C(s) Move
R(s) ——= G(s) C(s) summing-
8 | Rules 1/G(s) point point
before a
X(s) ! block

X(s)
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R(s) >

Rule 9 X1(s)<—

Xa(s)

»C(s)

R(s) —C(s)

Move take-
off point
after a
summing-
point

10

R(s)

Rule 10

Xa(s)

X1(s)

C(s)

R(s) C(s)

X,(s) Xi(s)

Move take-
off point
before a
summing-
point

Fig.5.4. Rules for reduction of Block Diagram model

5.4.Procedure for reduction of Block Diagram model:

Step 1: Reduce the cascade blocks.

Step 2: Reduce the parallel blocks.

Step 3: Reduce the internal feedback loops.

Step 4: Shift take-off points towards right and summing points towards left.

Step 5: Repeat step 1 to step 4 until the simple form is obtained.

C(s)

Step 6: Find transfer function of whole system as ——.

R(s)

5.5. Procedure for finding output of Block Diagram model with multiple inputs:

Step 1: Consider one input taking rest of the inputs zero, find output using the procedure
described in section 4.3.

Step 2: Follow step 1 for each inputs of the given Block Diagram model and find their

corresponding outputs.

Step 3: Find the resultant output by adding all individual outputs.
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CHAPTER#6

6. Signal Flow Graphs (SFGs)

It is a pictorial representation of a system that graphically displays the signal transmission in it.

6.1.Basic Definitions in SFGs:
Input or source node: It is a node that has only outgoing branches i.e. node ‘r’ in Fig.6.1.
Output or sink node: It is a node that has only incoming branches i.e. node ‘¢’ in Fig.6.1.
Chain node: It is a node that has both incoming and outgoing branches i.e. nodes ‘x;’,
X2","X3”,"X4”,*Xs"and “‘Xs” in Fig.6.1.
Gain or transmittance: It is the relationship between variables denoted by two nodes or
value of a branch. In Fig.6.1, transmittances are ‘t;’, ‘t,’,ts’,“ts’, “ts’and ‘ts’.

Forward path: It is a path from input node to output node without repeating any of the nodes
in between them. In Fig.6.1, there are two forward paths, i.e. path-1:°r-x;-X,-Xs-X4-Xs-Xe-C* and
path-2:“r-X;-Xs-X4-Xs-Xg-C’.

Feedback path: It is a path from output node or a node near output node to a node near input
node without repeating any of the nodes in between them (Fig.6.1).

Loop: It is a closed path that starts from one node and reaches the same node after trading
through other nodes. In Fig.6.1, there are four loops, i.e. 100p-1:*Xo-Xs-X4-X1", 100p-2:*X5-Xs-
Xs’, 100p-3:“X1-Xp-X3-X4-X5-Xg-X1” @Nd 100p-4:*X;-Xg-X4-X5-Xg-X1 .

Self Loop: It is a loop that starts from one node and reaches the same node without trading
through other nodes i.e. loop in node “x,” with transmittance “tss” in Fig.6.1.

Path gain: It is the product of gains or transmittances of all branches of a forward path. In
Fig.6.1, the path gains are P, = tit,tstyts (for path-1) and P, = tetstyts (for path-2).

Loop gain: It is the product of gains or transmittances of all branches of a loop In Fig.6.1,
there are four loops, i.e. Ly = -totsts, Lo = -tst7, Ls = -titolatatsts, and Ly = -totstststs.

Dummy node: If the first node is not an input node and/or the last node is not an output node
than a node is connected before the existing first node and a node is connected after the
existing last node with unity transmittances. These nodes are called dummy nodes. In Fig.6.1,
‘r’ and ‘c’ are the dummy nodes.

Non-touching Loops: Two or more loops are non-touching loops if they don’t have any
common nodes between them. In Fig.6.1, L, and L, are non-touching loops

Example:

ro

Fig.6.1. Example of a SFG model
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6.2. Properties SFGs:
o Applied to linear system
Arrow indicates signal flow
Nodes represent variables, summing points and take-off points
Algebraic sum of all incoming signals and outgoing nodes is zero
SFG of a system is not unique
Overall gain of an SFG can be determined by using Mason’s gain formula

6.3.SFG from block diagram model:
Let’s find the SFG of following block diagram model shown in Fig.6.2.

1 1 o(s)
>
sL, +R, sJ+f

w |~

Kp

Fig.6.2. Armature type speed control of a DC motor

Step-1: All variables and signals are replaced by nodes.
Step-2: Connect all nodes according to their signal flow.

Step-3: Each ofgains is replaced by transmittances of the branches connected between two nodes
of the forward paths.

Step-4: Each ofgains is replaced by transmittances multiplied with (-1) of the branches connected
between two nodes of the forward paths.

. S I = -
sL+R, [~ K [ s+t

[Z N

@
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L
1 s 6
(o > > o)
(b)
Fig.6.3. Armature type speed control of a DC motor
6.4.Mason’s gain formula:
Transfer function of a system=
N
P.A
c(s) &
G(s):—: = (6.1)

Where,
N= total number of forward paths
P.= path gain of k™ forward path

A= 1- (3 loop gains of all individual loops) + (3 gain product of loop gains of all possible
two non-touching loops) - (3 gain product of loop gains of all possible three non-touching
loops) + ...

A= value of A after eliminating all loops that touches k™ forward path

Example:

Find the overall transfer function of the system given in Fig.6.1 using Mason’s gain
formula.

Solution:
In Fig.6.1,

No. of forward paths: N =2

Path gain of forward paths: P, =tt,t.t,t. and P, =tgt;t,t.

Loop gain of individual loops: L, =-t,t;t,, L, =—t.t,, Ly =-tttt,tt; and L, = —tt,t,t.t,
No. of two non-touching loops = 2 i.e. L; and L,

No. of more than two non-touching loops = 0



A=1-(L+L+L+L,)+(LL)-0=1-L - L, - L,—L, +LL,
A, =1-0=1andA,=1-0=1

_PA +PRA,
A

G(s)

G (s)= (titotstats ) (1) + (totstyts ) (1)
T+ tytotg + oty + bttt bty + totat oty + tottetet

- tt bt b+ttt
T+ ttyty + bty + bttt bty + oottty + ttttt,

= G(s)

37
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CHAPTER#/

7. Feedback Characteristics of Control System
7.1. Feedback and Non-feedback Control systems

Non-feedback control system: It is a control system that does not have any feedback paths.
It is also known as open-loop control system. It is shown in Fig.7.1 (a) and (b).

Feedback control system: It is a control system that has at least one feedback path. It is also
known as closed-loop control system. It is shown in Fig.7.2 (a) and (b).

Ris) — &) b— co G(s)
R(s) e——b—>C(s)

@
(b)

Fig.7.1. (a) Block diagram of a non-feedback control system and (b) SFG of a non-feedback control system

R(s) + G(s) »C(s) R(s)o—»—@ »——0 C(s)
H(s) (b)' R

@

Fig.7.2. (a) Block diagram of a feedback control system and (b) SFG of a feedback control system

7.2. Types of Feedback in a Control system
7.2.1. Degenerative feedback control system: It is a control system where the feedback
signal opposes the input signal. Here,

Error or actuating signal = (Input signal) — (Feedback signal).

Referring Fig.7.3,
E(s)=R(s)-B(s) (7.1)

and

(7.2)

G(s)

»C(s)

H(s)

r 3

Fig.7.3. (a) Block diagram of a degenerative feedback control system
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7.2.2. Regenerative feedback control system: It is a control system where the feedback
signal supports or adds the input signal. Here,

Error or actuating signal = (Input signal) + (Feedback signal).

Referring Fig.7.4,

E(s)=R(s)+B(s) (7.3)
and
TZ(S):l—G(?s(;I)-I (s) (74

G(s) »C(s)

r 3

H(s)

Fig.7.4. Block diagram of a regenerative feedback control system

7.3. Effect of parameter variation on overall gain of a degenerative Feedback Control system

The overall gain or transfer function of a degenerative feedback control system depends upon
these parameters i.e. (i) variation in parameters of plant, and (ii) variation in parameter of
feedback system and (ii) disturbance signals.

The term sensitivity is a measure of the effectiveness of feedback on reducing the influence of
any of the above described parameters. For an example, it is used to describe the relative
variations in the overall Transfer function of a system T(s) due to variation in G(S).

percentage change in T(s)

sensitivity =
y percentage change in G(s)

7.3.1. Effect of variation in G(s) on T(s) of a degenerative Feedback Control system

In an open-loop system,
C(s)=G(s)R(s)

Let, due to parameter variation in plant G(s) changes to [G(s) + AG(s)] such that
|G(s)| >> |AG(s)|. The output of the open-loop system then changes to

C(s)+AC(s)=[G(s)+AG(s)]R(s)
= C(s)+AC(s)=G(s)R(s)+AG(s)R(s)
= AC(s)=AG(S)R(s) (7.5)

In an closed-loop system,
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G(s)
1+G(s)H(s)

Let, due to parameter variation in plant G(s) changes to [G(s) + AG(s)] such that
|G(s)| >> |AG(s)|. The output of the open-loop system then changes to

C(s)= R(s)

oS
— C(s)+ AC(5) = G(s)+AG(s)

GEH(s)= e (A (E) )

Since, |G(s)| >> |JAG(s)|, then G(s)H (s)U AG(s)H(s). Therefore, AG(s)H(s) is
neglected. Now,

)i AC (s _G s)+AG(s) <
Cl) A= G sy 1)
G(s) AG(s)
=+ A= R e T )
Or
AC(S)—l+éZ§SH &RO) (7.6)

Comparing eq (42 and (43), itis clear that AC (spen 100p) = (1 + GH) AC(ci0sed 100p)

This concept can be reproved using sensitivity. Sensitivity on T(s) due to variation in G(s) is
given by

5(T3 M ﬂ 9 (7.7)
0G/G oG T

For open-loop system,

Sé M @ 9 =1 (7.8)
0G/G oG G

For closed-loop system,

o _OTT _(+4GH)-GH 6 1
® 0G/G  (1+GH)  G/(1+GH) (L+GH)

(7.9)

Therefore, it is proved that ST (open loop) — = (1+ GH)STY (closed loop)* Hence, the effect of

parameter variation in case of closed loop system is reduced by a factor of (1+GH)
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7.3.2. Effect of variation in H(s) on T(s) of a degenerative Feedback Control system

This concept can be reproved using sensitivity. Sensitivity on T(s) due to variation in H(s) is
given by

g1 _OTT _oT H

=——X— 7.10
"OBH/MH oH T (7.10)
For closed-loop system,
si=T,H g C | H __ —CH (7.11)
oH T (1+GH) G/(1+GH) (1+GH)

For higher value of GH, sensitivity S’ approaches unity. Therefore, change in H affects
directly the system output.

Equation Chapter (Next) Section 1



MODULE#2
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CHAPTER#8

8. Time Domain Analysis of Control Systems

8.1. Time response
Time response c(t)is the variation of output with respect to time. The part of time response

that goes to zero after large interval of time is called transient response c(t). The part of time
response that remains after transient response is called steady-state response Cg(t).

C(t)

04

[+] . a4 [i] 8 10 12 14 16 18 20 t
| Transient state | Steady state
Cis (t) Css (t)

Fig.7.1. Time response of a system

8.2. System dynamics

System dynamics is the study of characteristic and behaviour of dynamic systems
i.e.

i. Differential equations: First-order systems and Second-order systems,
ii. Laplace transforms,

iii. System transfer function,

iv. Transient response: Unit impulse, Step and Ramp

Laplace transforms convert differential equations into algebraic equations. They are related to
frequency response

0

L {x(t)} =X(s) = [ x(tye *dt 8.1)

0
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No. Function Time-domain Laplace domain
X(t)= LX)} X(s)= L{x(t)}
1 Delay d(t-1) e
2 Unit impulse 3(t) 1
3 Unit step u(t) 1
S
4 Ramp t 1
S 2
5 Exponential decay e 1
S+o
6 Exponential approach (1_ e—«zt) a
s(s+a)
7 Sine sin ot )
s* +?
8 Cosine cos ot S
s’ + 0’
9 Hyperbolic sine sinh ot o
s? —¢?
10 Hyperbolic cosine cosh at S
s’ —a’
11 Exponentially decaying sine e~ sin wt @
wave (s+a)’ + o’
12 Exponentially decaying cosine e~ cosmt S+
wave (S + a)Z + 602
8.3. Forced response
K(s-z)(s-12,)...(s—z
C(5)=G(S)R(s) =B 2) (2 tu) 62)

(S=P)(S—P,)...(5-Py)

R(s) input excitation

8.4.Standard test signals
8.4.1. Impulse Signal: An impulse signal d(t) is mathematically defined as follows.

e undefined :t= 0}

(t) 0 10 (8:3)

Laplace transform of impulse signal is
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5(s)=1 (8.4)

&(t)

Fig.7.2. Impulse signal

Dirac delta function

X(t)=xo(t-a) (8.5)
Integral property of Dirac delta function
[ o5t -t,)dt = () (8.6)
Laplace transform of an impulse input
X(s)= Ie‘s‘ x0(t —a)dt = xe ™ (8.7)

0

8.4.2. Step Signal: A step signal u(t) is mathematically defined as follows.
0 ;t<O0
uty=_ ' 8.8
( ) K ;t> O} (88)
Laplace transform of step signal is

U(s)=— (8.9)

utt)




8.4.3.

8.4.4.

8.4.5.
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Fig.7.2. Step signal

Ramp Signal: A step signal r(t) is mathematically defined as follows.

0 ;t<O0
r(t): Kt ;tzo} (8.10)

Laplace transform of ramp signal is

R(s)=— (8.12)

rt) 4

—-.

Fig.7.3. Ramp signal

Parabolic Signal A step signal a(t) is mathematically defined as follows.

t<0
a(t)=kt2 8.12
M=k g (8.12)
2
Laplace transform of parabolic signal is
A(s)=5 (8.13)
s

a(t) 4

Fig.7.4. Parabolic signal

Sinusoidal Signal A sinusoidal x(t) is mathematically defined as follows.
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x(t)=sinwt (8.14)

Laplace transform of sinusoidal signal is

X(s)=|e ¥ sinwtdt= 8.15
(5)=[esinatat= 57 (815)
Fig.7.4. Sinusoidal signal
8.5. Steady-state error:
A simple closed-loop control system with negative feedback is shown as follows.
R(s) G(s) »C(s)
H(s) |«
Fig.7.5. A simple closed-loop control system with negative feedback
Here,
E(s)=R(s)-B(s) (8.16)
B(s)=C(s)H(s) (8.17)
C(s)=E(s)G(s) (8.18)
Applying (1) in (9),
E(s)=R(s)-C(s)H(s) (8.19)
Using (11) in (12),
E(s)=R(s)—E(s)G(s)H(s) (8.20)

= [1+G(s)H(s)|E(s)=R(s) (8.21)



Steady-state error,

e, =lime(t)=limsE(s)

t—ow s—0

Using (15) in (16),

e, =limsE(s)=lim SR(s
S 550 501+ G(s)H(s)

Therefore, steady-state error depends on two factors, i.e.

(@) type and magnitude of R(s)
(b) open-loop transfer function G(s)H(s)

8.6. Types of input and Steady-state error:
8.6.1. Step Input

Using (18) in (17),

(Aj

S J—

. S A
e, =lim

BT G()H(S) EBI:G(s)H(s)

e, = A __A
ss . -
l+|ST(1)G(S)H(S) 1+K,
Where,
KP:LmG(s)H(s)
8.6.2. Ramp Input
A
R(S)Zs—z

Using (18) in (17),

~—
>

s A
: 52
g, =lim

s501+G(s)H (s) 3»05[1+G(S)H(S):|
= e = e ()H (5)
S B—

® limsG(s)H(s) K,

s—0

Where,
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(8.22)

(8.23)

(8.24)

(8.25)

(8.26)

(8.27)

(8.28)

(8.29)

(8.30)



8.6.3. Parabolic Input

Using (18) in (17),

% T IRG(H(s) SRS [LrG(9)H ()]

=8 slﬂ?)serszG(s)H(s)
—e. = A _A
S T 2~V (o) WK
Isms G(s)H(s) K

Where,
Ky =lims’G(s)H(s)

s—0

Types of input and steady-state error are summarized as follows.

Error Constant Equation Steady-state error (eg)

Position Error Constant (Kp) Kp = IimG(s) H (S) A
s—0

Velocity Error Constant (Ky,) K, = ””3, sG (5) H (s)
S—>!

Acceleration Error Constant (K,) K. —=limsG (s) H (S)
A=

s—0 SS

8.7. Types of open-loop transfer function G(s)H(s)and Steady-state error:
8.7.1. Static Error coefficient Method

The general form of G(s)H(s) is

_ K(1+Ts)(1+T,8)..(1+T,5)
G(s)H(s)= s (1+T,8)(1+T,8)...(1+T,8)

Here, j = no. of poles at origin (s = 0)
or, type of the system given by eq (28) is j.
8.7.1.1. Type O
6(s) (S):K(1+Tls)(1+Tzs)...(1+Tns)
(1+T,5)(1+Tys)...(1+T,s)

Here,
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(8.31)

(8.32)

(8.33)

(8.34)

(8.35)

(8.36)



Kp =limG(s)H(s)=K

s—0
Therefore,
A
eSS =
1+K
8.7.1.2. Type 1
G(sVH (s)— K(1+Ts)(1+T,8)...(1+T,9)
(s)H(s)= S(1+7T,8)(1+T,8)..(1+T,s)
Here,
Ky :li_r)rgsG(s)H (s)=K
Therefore,
A
ess =7
K
8.7.1.3. Type 2
G(s)H (5) K(1+Ts)(1+T,8)...(1+T,s)
82 (14 T,8)(1+Tys). (14T, 9)
Here,
Ky =lims’G(s)H(s)=K
Therefore,
_A
ss _E
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(8.37)

(8.38)

(8.39)

(8.40)

(8.41)

(8.42)

(8.43)

(8.44)

Steady-state error and error constant for different types of input are summarized as follows.

Step input Ramp input Parabolic input
Type
Kp €ss Ky €ss Ka €ss
Type 0 K A 0 0
o0 o0
P 1+K
A
Type 1l 0 0 K K 0 0
A
Type 2 0 0 © 0 K X

The static error coefficient method has following advantages:

e Can provide time variation of error
o Simple calculation
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But, the static error coefficient method has following demerits:

o Applicable only to stable system
e Applicable only to three standard input signals
« Cannot give exact value of error. It gives only mathematical value i.e. 0 or «



8.7.2. Generalized Error coefficient Method
From eq (15),

1
0 st
So,
E(s)=R(s)F(s)
Where, F, = and F,(s)=R(s)

1+G(s)H(s)

Using convolution integral to eq (38)

t t
e(t)=[ fy(s)f, (t=7)dr = [ f,(r)r (t-7)d=
0 0
Using Taylor’s series of expansionto r(t—7),
‘L'Z ‘L'3
r(t—z)=r(t) —rr'(t)+ar"(t)—§r"'(t) +.

Now, applying eq (40) in eq (39),

t t

e(t)=[ f,(e)r(t)dz - [er'(1) fl(r)dr+j.%2!r"(t) fl(r)dr—j.%s!r"'(t) f,(v)dz + ..

0 0 0

Now, steady-state error, e is

e, =lime(t)

too

Therefore,

t t

too t—owo
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(8.45)

(8.46)

(8.47)

(8.48)

(8.49)

e, = lime(t)=lim J.fl(r)r(t)dr—j.rr'(t)fl(r)dr+j.%2!r"(t)fl(r)dr—J.Tg—s!r"'(t)fl(r)dr+...

0 0

or'(t) f (o )dr +T%2!r"(t) f(c)dr —T%s!r'"(t) f(r)dr+..

(8.50)

D
a
Il
ot—3
—y
fiy
—_
!
~—
=
—
—
~—~—
o
!
|
ot—38

Eq (44) can be rewritten as

e =Cor (4G (1) + 217 (0)+ 207 (1) .

Where, Co, C1, Cy, Cs, etc. are dynamic error coefficients. These are given as

(8.51)



C, :! fy(v)de =limF (s)
K . dF(s
C = ;[_T f,(z)dr = Ism%
. s ZF( , and so on...
_[* _Ii 1S
c, _l o7 (o) =lim=—=
[ - d’R(s)
C3 ZE').—E fl(‘[)df‘i‘zlsm d53
8.8. First-order system:
A Governing differential equation is given by
y+7y=Kx(t)

Where, Time constant, sec = r,

Static sensitivity (units depend on the input and output variables) = K ,
y(t) is response of the system and

X(t) is input excitation

The System transfer function is

& =G(S) :L
(s) @+75s)

Pole-zero map of a first-order system

Normalized response

In this type of response

53

(8.52)

(8.53)

(8.54)



e Static components are taken out leaving only the dynamic component
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The dynamic components converge to the same value for different physical systems of

the same type or order
e Helps in recognizing typical factors of a system

8.8.1. Impulse input to a first-order system
Governing differential equation

y+7y=Kxo(t)

Laplacian of the response

Kx Kx.| 1
Y(s)= —=— —1
d+7s) 7| 2
T
Time-domain response
t
YO =""e
T
Impulse response function of a first-order system
t
h)=Re-
T

By putting x =1 in the response
1
Response of a first-order system to any force excitation

Y == [e Ft—n)n
T 0

(8.55)

(8.56)

(8.57)

(8.58)

(8.59)

The above equation is called Duhamel’s integral. Normalized response of a first-order system to

impulse input is shown below.

8.8.2. Step input to a first-order system
Governing differential equation

y+71y=Kxu(t)

(8.60)



Laplacian of the response
ML S

sl+zs) s 1

T
y(t) = Kx [1— e_:J

Normalized response of a first-order system to impulse input is shown below.

Time-domain response

8.8.3. Ramp input to a first-order system
Governing differential equation

y+7y=Kt
Laplacian of the response
YO g T s
ts) s s 1
T
Time-domain response
t
w:t—r+re_;
K

Normalized response of a first-order system to impulse input is shown below.
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(8.61)

(8.62)

(8.63)

(8.64)

(8.65)
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8.8.4. Sinusoidal input to a first-order system
Governing differential equation

y+7y=KAsin ot (8.66)

Laplacian of the response

Y(s)= K (Aco} o { T s 1 2} (6.67)

A+75)\ s% + o _1+(m)2 s+1/7 S +0° S+

Time-domain response

yt) . o {

- re‘”f—rcos,a)t+isinwt} (8.68)
KA 1+(wr)

(0]

Normalized response of a first-order system to impulse input is shown below.

Transient response

l l ‘ Steady-state response
nne I I I

amplitude

AT

| f A 3 as i

time, sec

8.9.Second-order system
A Governing differential equation is given by
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my + ¢y + ky = Kx(t) (8.69)

Where, t = Time constant, sec,

K = Static sensitivity (units depend on the input and output variables),
m = Mass (kg),

¢ = Damping coefficient (N-s/m),

k = Stiffness (N/m),

y(t) is response of the system and

X(t) is input excitation

The System transfer function is

Y (s) _ K
X(s) mi{s*+20e,s+wf

(8.70)

Pole-zero map

(@) C>1 over damped
Poles are:

S, =~ (§ i\/ﬁ) (8.71)

Graphically, the poles of an over damped system is shown as follows.

Jitn i plane

e :';-' \";-_ll

a(¢-E7)

(b) ¢ =1 critically damped
Poles are:

5., =0, (8.72)

Graphically, the poles of an critically damped system is shown as follows.



(c) C<1 under damped
Poles are:

50 =0, (6 £ W1-¢7)
=S, =0, * jo,
Where, o, =Damped natural frequency
w0, =0 \J1-¢?
Graphically, the poles of an critically damped system is shown as follows.

Jin 3 plane

Here, tan g8 =
1-¢2

(d) ¢ =0 un-damped
Poles are:

58

(8.73)

(8.74)

(8.75)
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Solved problems:

1. Asingle degree of freedom spring-mass-damper system has the following data: spring stiffness 20
kN/m; mass 0.05 kg; damping coefficient 20 N-s/m. Determine

(@) undamped natural frequency in rad/s and Hz

(b) damping factor

(c) damped natural frequency n rad/s and Hz.
If the above system is given an initial displacement of 0.1 m, trace the phasor of the system for three
cycles of free vibration.

Solution:
3
o, = \E = 2210 _ 63246 radis
m 0.05
0 83246 100 661z
2 2

= c 20
27km  24/20%x10° x0.05

0, =, \1-¢? =632.46v/1-0.322 = 600rad/s

f,=20 000 _ g5 5714,
2r 2«

y(t) — Ae_g“’”t — Olle—0.32><632.46t

=0.32

2. A second-order system has a damping factor of 0.3 (underdamped system) and an un-damped
natural frequency of 10 rad/s. Keeping the damping factor the same, if the un-damped natural
frequency is changed to 20 rad/s, locate the new poles of the system? What can you say about the
response of the new system?

Solution:

Given, ., =10 rad/s and w,, = 20 rad/s
oy =, 1-¢? =10§1-0.3° = 9.54rad/s

@, =0, \1-¢? =20§1- 0.3 =19.08rad/s

P, =—Gw, * jo, =—3+j9.54



Py, = —Co, * jo, =—6+ j19.08

¢ 0.3

tan 8 = =
g J1-¢? J1-03

=17.45°

8.9.1. Second-order Time Response Specifications with Impulse input

(@) Over damped case ({>1)
General equation

Laplacian of the output

Y(s)=%[ !

y+2¢wny+w§y=%6(t)

s°+2{w,S+? j

Kx

1

1

T 2ma,Ci-1

Time-domain response

|

(5+Cm,—0e* =) (s+¢o,+w,o7 -1

KX, ot o P
y(t)Z{m]eg Slnh(a)n g —1)t

(b) Critically damped case (;=1)
General equation

Laplacian of the output

Time-domain response

(c) Under damped case (£<1)

§roty=""s)
m

Y(s)=%[

y(t) = { K
Mo

n

1
s° + o’

} o te ™

|
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(8.76)

(8.77)

(8.78)

(8.79)

(8.80)

(8.81)
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Poles are: s, =—(w, £ jo,
General equation

y+2§a)ny+a)fy:%5(t) (8.82)

Laplacian of the output

Y(s) = K—X{ L } (8.83)

m (S+Ca)n+ja)d)(s+§a)n_ja)d)

Time-domain response

y(t) = {nfi} e " sin w,t (8.84)

Wy

Normalized impulse-response of a second-order system with different damping factors are shown
graphically as follows.

[
=

(]
] nderdamped
& oe ,U P
(=1
8.
- o rtically damped
@ .o N Overdamped
[ L
AR
E = -
=
=
3T
g T I 0 5 o

Solved problems:

3. A second-order system has an un-damped natural frequency of 100 rad/s and a damping factor of
0.3. The value of the coefficient of the second time derivative (that is m) is 5. If the static
sensitivity is 10, write down the response (do not solve) for a force excitation shown in the figure
in terms of the Duhamel’s integral for the following periods of time: 0<t<tl, t1<t<t2 and t>t2.

Solution:

Given, Undamped natural frequency ®,=100 rad/s
Damping factor £ =0.3

Coefficient of the second time derivative m=5
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Static sensitivity K=10

0, = 0,\J1- ¢ =100y/1-0.3> =95.39 rad/s
Here,
F(t):F% 0<t<t,

F(t) :&(t2 -t) st <t<t,

2

K .
t) = —n)e " sin
yo=—- n) (@gm)dn

d o

= y(t) —mje_o 31007 gjn (95 3977)(t n)dn

0<t<t,,
_ 0.057F

b

by
0.057F [&sin(95.397) (t -n)dn
0

je-3°'7 sin(95.397) (t —n)dn
0

= y(t)=

| 't <t<t, and
n O';OS?F J.e"SOW sin(95.397) (t, —t—n)dn
2 '

Y
0.057F j e " sin(95.397 ) (t —17)dn

=y()=

>t
0057F

tz

J.e'SO’? sin(95.397)(t, —t —n)dn

8.9.2. Second-order Time Response Specifications with step input

Y (s) = —2L
) {s(s+§a) +@,C° )(s+§a) —w,\¢? )}

y(t)_ma) {1 g et {cosh(a)n 42—1)t+ ¢ sinh(a)n 42—1)1} (8.86)

(8.85)

" Jei-1

Y (s) =&{ , 1 _ } (8.87)
m S(S +§a)n + de)(s+gwn - Ja)d)

(t)_ {1 g {cosa)dHLsina)d t}} (8.88)
Mao, 1-¢2



14 Ungerdamping

MNomalized responsa

8.10. Time Response Specifications with step-input for under-damped case
For under-damped case, the step-response of a second-order is shown as follows

63

187 T
i 1 damping factor=0.1
16¢ .'i Hatural frequency 2 radis
1] overshoot
14444 d
| n \
|1 /|
X 1 1
1.2} i i \
i s
i \ PSS S {5
J"HW 1--—-3—--—-’-- | —— = E- T--—-r--n-u
1 1 H
kx, | I . :
LR ] o i . ! |
i | i
| " 1 ]
(18 [ :
| | ]
| : :
HE !
[ 1 i |
i Rise time) | :
oz : : ts:el'!_hri_th‘n‘ne]
[f 1 | {peak time)
| 1 1
| LV,
il [ T 1 3 i |
1] 5 10 15 20 25
Tirne, sec

p=tan™

For this case, different time-domain specifications are described below.
(i) Delay time, ta

(8.89)

(8.90)
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(ii) Rise time, tr

(iii) Peak time, tp

(iv) Peak overshoot, Mp
(v) Settling time

For unity step input,
(i)Delay time, tq: It is the time required to reach 50% of output.

1 e_gwntd .
Y(td)zazl_ 1 CZ sin(wyty +¢)
oy, = 1F0T¢ (8.91)
w

(ii) Rise time, t-:The time required by the system response to reach from 10% to 90% of the
final value for over-damped case, from 0% to 100% of the final value for under-damped case
and from 5% to 95% of the critically value for over-damped case.

_gwntr

y(tr):lzl—\/l_7

—Cant,

J1-¢2

Saoul, to=7n

sin(wgyt, +¢)

=

sin(wyt, +9) =0

—~t =@ 8.92
r
Wd

(iii) Peak time, to: The time required by the system response to reach the first maximum value.

dy(t,)
dt
et
dl1- sin(wgt, +¢)
1-¢2
=— =0
dt
_gwntp
d| ———sin(oyt, + @)
J1-¢2
=— =0
dt
41-¢°
= W,t, +¢ =tan =nr+¢;wheren=123,..
For n=1,
= Wdtp =Nnr
nz
:>tp " (8.93)
Wy

(iv) Peak overshoot, Mp: It is the time required to reach 50% of output.

Mp(%)zlooxz—(t—’;—):E
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sin(ogt, +¢)

sin(z + @)

[ —Cont,
05) — = qj —
=M, (%) =100x _1 Jl—?sm(wdtr +) 1]
_ _gwnl
(%) © 7 din(oty +0) "
=M, (%)=100x| ——sin(wyt, +¢) |=100x | ———
P i 1_4/2 P 1_C2
s s
(%) =100  dino, — T+ g) |=1004 &
=M, (%)=100x| ———sin(owy ——=—=+¢) |=100%x| ——
P -2 -t J1-¢?
s s
(0) =100 £ A
=M, (%)=100x| ———==sin¢ |=100x 1-¢
p 1_4,2

= M, (%)=100xe ¥<°

(8.94)

(iv) Settling time, t;: It is the time taken by the system response to settle down and stay with in +2%

or +5% its final value.
For +2% error band,

Lot
cw,
For +5% error band,
t=——
T Qw,

(8.95)

(8.96)

Time Specifications
SI. No.
Type Formula
1+0.7
1 Delay time ty 1076
Wn
T —
2 Rise time t = ¢
Wy
. T
3 Peak time t,=—
Wy
- - ﬂg
4 Maximum overshoot M . (%) —100xe Jic?
5 Settling ti t _i
ettling time T w
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Solved Problems:

1. Consider the system shown in Figure 1. To improve the performance of the system a feedback is
added to this system, which results in Figure 2. Determine the value of K so that the damping
ratio of the new system is 0.4. Compare the overshoot, rise time, peak time and settling time and
the nominal value of the systems shown in Figures 1 and 2.

R(s R(s) :' &
() 20 -o(s) 0 w20 1 | —_—_
+ s(s71) FE +hst] s |
' —
Figure 1 Figure 2

Solution:
For Figure 1,

20
c(s)  G(s) _ s(s+l) 20
R(s) 1+G(s) 4, 20 s*+s+20

s(s+1)
Here, o7 =20 and 2w, =1
o, =\/2_Orad/s and g:iz ! =0.112

20, 2x+/20
For Figure 2,

20

c(s)  G(s) _ s(s+1+20K) 20
R(s) 1+G(s) 4. 20 s? +(1+20K)s+20

s(s+1+20K)
Here, o} =20 and 2o, =1+ 20K
W, = /20 rad/s
But, given that { = 1+20K = 1+20K =0.4

20, 220

= K =0.128
Transient characteristics of Figures 1 and 2
CharacteristicS Figure 1 Figure 2
Overshoot, M, 70% 25%
Rise time, t; sec 0.38 0.48
Peak time, t,, sec 0.71 0.77
Settling time (2%), sec 8 2.24
Steady-state value, c,, 1.0 1.0




1.1. Transient Response using MATLAB

Program 1: Find the step response for the following system

Solution:

>> num=[3 20]

num=

3 20

>> den=[1 5 36]

den=

1 5 36

>>sys=tf(num,den)

Transfer function:
3s+20

§"2+55+36
>>step(sys)

Program 2: Find the step response for the following system

Solution:
>> num=[20]
num=

20
>> den=[1 425]
den=

1 4 25
>>sys=tf(num,den)
Transfer function:
20

§N2+4s5+25

>>step(sys)

C(s)  3s+20

R(s) s®+5s+36

C(s) 20

R(s) si+4s+25

67
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2. Stability
2.1.Concept of stability

Stability is a very important characteristic of the transient performance of a system. Any working
system is designed considering its stability. Therefore, all instruments are stable with in a boundary of
parameter variations.

A linear time invariant (LTI) system is stable if the following two conditions are satisfied.
(i) Notion-1: When the system is excited by a bounded input, output is also bounded.
Proof:

A SISO system is given by

m m-1
C(S):G(s):bos +bs"t +...+b, 0.1)
a,s" +a,;s" .. +a,

So,
c(t)=a[G(s)R(s)] 9.2)

Using convolution integral method

C(t):Tg(r)r(t—r)df (9.3)

g(r)=0a"'G(s) = impulse response of the system

Taking absolute value in both sides,

00

jg(r)r(t—r)dr

0

(9.4)

e()]=

Since, the absolute value of integral is not greater than the integral of absolute value of the integrand

0

le(t) < [lo(z)r(t=7)dr|

0

=e(t)|<[lg(r)r(t-)dz (9.5)

0

= [e(v)|<[lo(o)]|r (t-7)d=

0

Let, r(t) and c(t) are bounded as follows.

|r(t)|SM1<oo

e(t)] <M, < &0

Then,
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oo

le(t)] <M, [|g(e)dr <M, 9.7)

0

Hence, first notion of stability is satisfied if _ﬂg (r)|dr is finite or integrable.
0

(if) Notion-2: In the absence of the input, the output tends towards zero irrespective of initial
conditions. This type of stability is called asymptotic stability.

2.2. Effect of location of poles on stability

Pole-zero map | Normalized response

Over-damped close-loop poles

|y $ plane

Critically damped close-loop poles

Pole-zero map Normalized response

Jrr 5 plane

Under-dampedclose-loop poles

Pole-zero map | Normalized response
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i(ﬂ s plane

A

-5

Un-dampedclose-loop poles

Pole-zero map

Normalized response

[cy $ plane

Negative Under-dampedclose-loop poles

Pole-zero map

Normalized response

J s plane

A

X

Ll ®)

Negative Over-dampedclose-loop poles

Pole-zero map

| Normalized response




71

i'-'" § plane

- |

2.3.Closed-loop poles on the imaginary axis
Closed-loop can be located by replace the denominator of the close-loop response with s=jw.

Example:
1. Determine the close-loop poles on the imaginary axis of a system given below.

K
Gls)= s(s+1)

Solution:

Characteristics equation, B(s) =s” +s+K =0

Replacing s = jw

B(jo) = (jo)’ +(jw)+K =0

=(K-0?)+ jo=0

Comparing real and imaginary terms of L.H.S. with real and imaginary terms of R.H.S., we get

a)zx/?anda)zo

Therefore, Closed-loop poles do not cross the imaginary axis.

2. Determinetheclose the imaginary axis of a system given below.
B(s)=s*+6s*+8s+K =0.

Solution:

Characteristics equation,

B(jo) =(jo)’ +6(jw)* +8jw+K =0

=(K—6¢")+ jBow—®)=0

Comparing real and imaginary terms of L.H.S. with real and imaginary terms of R.H.S., we get
o = +~/8 radisand K = 60 = 48

Therefore, Close-loop poles cross the imaginary axis for K>48.
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2.4.Routh-Hurwitz’s Stability Criterion

General form of characteristics equation,
B(s)=as"+a, 8" +--as+a, =0
={s-5)s1)- (—1)=0

Where, I; = Roots of the characteristics equation

2.4.1. Necessary condition of stability:
Coefficients of the characteristic polynomial must be positive.

Example:

3. Consider a third order polynomial B(s) = s* + 3s® +16s+130 . Although the coefficients of the

above polynomial are positive, determine the roots and hence prove that the rule about
coefficients being positive is only a necessary condition for the roots to be in the left s-plane.

Solution:
Characteristics equation, B(s) = s* +3s” +16s +130 =0
By using Newton-Raphson’s methodr, =5 and r,, =1+ j5

Therefore, from the above example, the condition that coefficients of a polynomial should be positive
for all its roots to be in the left s-plane is only a necessary condition.

2.4.2. Sufficient condition of stability:
2.4.2.1.Method | (using determinants)
The coefficients of the characteristics equation are represented by determinant form

as follows.
an—l n-3 n-5
a a a -
An — n n-2 n-4 (98)
0 a, a3 -

Here, the determinant decreases by two along the row by one down the
column. For stability, the following conditions must satisfy.

a a an—l an—3 an—5
A=a,,>0A,=| """ "*|>0,A,=|a, a,, a,,[/>0- (9.9)
n an—Z
an—l an—3
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2.4.2.2.Method Il (using arrays)
The coefficients of the characteristics equation are represented by array form as

follows.
Sn an an—Z an—4
Sn_l n-1 an—3 an—5
n-2
Sn_3 bn—l bn—3 bn—5 (910)
S Cn—l Cn—3 Cn—5
Where,
b . = (an—l)(an—z) B an (an—3)
n-1
an—l
a a —a (a
bn_3 — ( n—l)( n—4) n( n—5) (911)
an—l
c . = (bn—l)(an—S) — an—l (bn—3)
n-1
bn—l

For stability, the following conditions must satisfy.
The number of roots of B(s) with positive real parts is equal to the number of sign
changes an, an1, bn.1, Cn.1, €tc.

Example:

4. Find stability of the following system given by G(s) =

and H(s)=1 using Routh-

s(s+1)
Hurwitz stability criterion.
Solution:
_K
In the system, T(s)= G(s) _ S(s+D > K
1+G(s)H(s) 4, K s“+s+K
s(s+1)

Method-I,

Characteristics equation, B(s)= s2+s+K=0

A =1
Here, 1 0
A, = =K
1 K
>0

. A
For stability,
A, >

The system is always stable for K>0.
Method-II,
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Characteristics equation, B(s)=s’+s+K =0

Here, Routh array is

1 K
stf1 0
s°|K

There are no sign changes in first column elements of this array.Therefore, the system is always stable
for K>0.

5. Find stability of the following system given byG(s)z#and H(s)=1 using
s(s+2)(s+4)
Routh-Hurwitz stability criterion.

Solution:

K

G(s
In the system, C(s) = ( ) = s(s+2)(s+4) =— ZK
R(s) 1+G(s)H(s) 14 K $°+6s° +8s+K
s(s+2)(s+4)

Method-I,

General form of characteristics equation, B(s)= a,8° +a,s* +a;s+a,=0

And in this system, characteristics equation is B(s)= s®+6s°+85+K =0

Here,sufficient condition of stability suggests

Al=8>O,A2=6 K=(48—K)>O,
1 8
6 K 0
A,=[1 8 0|=K(48-K)>0
0 6 K

Therefore, the system is always stable for K <48.
Method-II,

Characteristics equation is B(s)=s+6s’ +8s+K =0

andRouth’s array

g 1 8

$2 6 K

48K
6
s’k

There are no sign changes in first column elements of this array if K <48. Therefore, the system is
always stable for 0 < K < 48.
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6. Find stability of the following system given by B(s)=s®+5s’ +10s + 3using Routh-Hurwitz
stability criterion.

Solution:

In this problem, given Characteristics equation is B (s) =5° +55%+10s +3 =0, andRouth’s array is

11 10
s[5 3
9.4 0
0 3

There are no sign changes in first column elements of this array. Therefore, the system is always
stable.

7. Find stability of the following system given by B(s)=s®+2s’+3s+10 using Routh-Hurwitz
stability criterion.

Solution:
In this problem, given characteristics equation is
B(s)=s’+2s”+3s+10=0and

Routh’s array is

3

s°l1 3
s?[2 10
¢l-2 0
0|10

There are two sign changes in first column elements of this array. Therefore, the system is unstable.

8. Examine stability of the following system given by s°+2s*+4s>+8s? +3s+1 using Routh-Hurwitz
stability criterion.

Solution:

In this problem, Routh’s array is

3

2.5

w
8 o N+

Here, the criterion fails. To remove the above difficulty, the following two methods can be used.
Method-1

(i) Replace 0 by g(very small number) and complete the array with e.
(if) Examine the sign change by taking ¢ -0

Now, Routh’s array becomes
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s° 4
g4 8 1
$ P 25 0
§2 5-8¢ 1 0

&
g 2.5(5_&)—5

& J
5-8¢

&

s° 1

Now putting £ — 0, Routh’s array becomes

s 1 4
st 2 8 1
$? P 25 0
§2 5-8¢ 1 0

&
. 2.5(5_&)—

&

5-8¢

&

s? 1

There are two sign changes in first column elements of this array. Therefore, the system is unstable.
Method-2

Replace s by 1 . The system characteristic equation §°+25" +4s° +8s°+35+1=0 becomes
z

i+£+i+§+§+170
VAR AR AR S

—=7%4+32%+82%+42%+2Z +1=0

Now, Routh’s array becomes

S 1 8 2
s'l 3 4 1
sl 6.67 167 0
20325 1 0
§1[-0385 0 0
o 1 0 0

There are two sign changes in first column elements of this array. Therefore, the system is unstable.

9. Examine stability of the following system given by s°+2s*+25°+4s*+4s+8 using Routh-Hurwitz
stability criterion.

Solution:

In this problem, Routh’s array is
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1 2 4
s'(2 4 8
0 0 0
SZ
S1
S0

Here, the criterion fails. To remove the above difficulty, the following two methods can be used.

The auxillary equation is
A(s)=2s"+45"+8

dA

:ﬂ =85°+8s
ds

Now, the array is rewritten as follows.

Sl 1 2 4
S 2
sl 8
s? 2
st|—24
o| 8

8
0
0

O 00 00 M~

There are two sign changes in first column elements of this array. Therefore, the system is

unstable.

10. Examine stability of the following system given by s*+5s°+2s?+3s+1=0 using Routh-Hurwitz
stability criterion. Find the number of roots in the right half of the s-plane.

Solution:

In this problem, Routh’s array is

s 2 2
s} 5 3

s?| 1.4 2
si[-4.14 0

N 2

There are two sign changes in first column elements of this array. Therefore, the system is unstable.
There are two poles in the right half of the s-plane.

2.4.3. Advantages of Routh-Hurwitz stability
(i) Stability can be judged without solving the characteristic equation
(i) Less calculation time
(iii) The number of roots in RHP can be found in case of unstable condition
(iv) Range of value of K for system stability can be calculated
(v) Intersection point with the jw-axis can be calculated
(vi) Frequency of oscillation at steady-state is calculated



2.4.4. Advantages of Routh-Hurwitz stability
(i) Itisvalid for only real coefficient of the characteristic equation
(if) Unable to give exact locations of closed-loop poles
(iii) Does not suggest methods for stabilizing an unstable system
(iv) Applicable only to the linear system
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CHAPTER#10

10. Root locus

10.1. Definition:

80

The locus of all the closed-loop poles for various values of the open-loop gain K is called root locus.
The root-locus method is developed by W.R. Evans in 1954. It helps to visualize the various
possibilities of transient response of stable systems.

Closed-loop response function

Characteristic equation

C(s)_  G(s)
R(s) 1+G(s)H(s)

1+G(s)H(s) =1+ K(s-z)(s—2,)--(s-2z) o
(5= P)(S— Py)--(S— Py)

Vector from open-loop pole to the root-locus

Vector from open-loop zero to the root-locus

Behaviors of closed-loop poles

(10.1)

(10.2)

Closed-loop poles negative Exponential decay Stable
and real

Closed-loop poles complex Decaying and oscillatory Stable
with negative real parts

Closed-loop poles positive and | Exponential increase Unstable
real

Closed-loop poles complex Exponential and oscillatory Unstable

with positive real parts

increase

10.2. BASIS for CONSTRUCTION
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10.2.1. Construction steps

Determine the number of open-loop poles and zeros

Mark open-loop poles and zeros on the s-plane

Determine parts of the root-locus on the real axis
Determine breakaway and break-in points

Draw asymptotes to the root-locus

Determine angles of departure

Determine angles of arrival

Determine points on the root-locus crossing imaginary axis
Obtain additional points and complete the root-locus

©CoNoUA~AWNE

10.2.2. Starting points
Characteristics equation of a closed-loop system

K(S—2)(S—2,)..(S — 7,)
1+ G(s)H =1 =0 10.3
) = = m) (5= py) (103)

For K=0,

_ 5= P)(S=Py) (5= P) + K(S=2)(5 - 2,)..(5 - 2) _
(CRRv) CRgVYRCES Y

= (s—p)(s—p,)-(s—p,)=0 (10.4)

Open-loop poles are also closed-loop poles for K=0. A root-locus starts from every open-loop pole.

10.2.3. Ending points
Characteristics equation of a closed-loop system

1+ G(s)H (s) =1+ KE=2)E=2).. (5= 7,)

=0 (10.5)
(5= P)(s—Py)---(s— Py)
For K=oo,
- K(s-z)(s-2,)..(s-z,)
(s—p)(s—Py)--(s—p,)
=(s-z7)(s-1z,)..(s-z,)=0 (10.6)
Root-locus ends at an open-loop zero or at infinity.
10.2.4. Magnitude and angle criterion
1+G(s)H (s) =1+|G(s)H (s)|(cosy + jsiny) =0 (10.7)
Angle criterion:
w=>06-> ¢;180° +360k (10.8)
i=1 j=1

Where, 6, = angle in case of i pole and ;- angle in case of ™ zero
Magnitude criterion:
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IG(S)H (5)| =1 (10.9)

10.2.5. Determining gain at a root-locus point

Using the magnitude of vectors drawn from open-loop poles and zeros to the root-locus point, we get
n

H(S_pi)

il _E=p)lI=po) - I(5=Pu)l _

= (10.10)
s—2)|Is-2,)].-.|(s-z
[e-z) | 2s-2)l-16-2)
j=1
Gain at a root-locuspoint is determinedusing synthetic division.
Example:
Determine K of the characteristic equation for the root s=-0.85.
Solution:
S3 4652 +8s+K=0 (10.11)

1 6 8 K
-0.85 -4.378 -3.079
1 5.15 3.622 K-3.079=0

10.2.6. Determine parts of the root-locus on the real axis

1. Start from open-loop poles on the real axis, extend on the real axis for increasing
values of the gain and end at an open-loop zero on the real axis.

2. Start from open-loop poles on the real axis, extend on the real axis for increasing
values of the gain and end at an infinite value on the real axis.

3. Start from a pair of open-loop poles on the real axis, extend on the real axis for
increasing values of gain, meet at a point and then leave the real axis and end at a
complex open-loop zero or infinity.

4. Start from a pair of open-loop poles on the real axis, extend on the real axis for
increasing values of gain, meet at a point and then leave the real axis. They may once
again enter the real axis and end at open-loop zeros or at a large value on the real axis.

5. Start from a pair of complex open-loop poles, enter the real axis and end at an open-
loop zero or an infinite value on the real axis. They could leave the real axis again and
end at a complex open-loop zero or infinity.

10.2.7. Angle contributions from complex poles
Complex poles and zeros do not contribute to the angle criterion on the real axis



10.2.8. Determine breakaway and break-in points of the root-locus

_1. kA6 _
1+G(s)H(s)=1+K B(S) =0

f(s)=B(s)+ KA(s)=0

__B®)
- As)

£(5) = (5=5) (5 =8,).(S — 5y 1) =0

%: r(s _Sl)r_l(s - SZ)"'(S_ Sn—r+1) +(s _Sl)r-(S _SS)“(S_ Sn—r+1) 4.
d e _,
ds

f'(s)=B(s)+ KA(s)=0

= K= —w
A(s)
Therefore,
B'(s)A(s)—B(s)A(s)=0

At breakaway and break-in points of the root-locus,
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(10.12)

(10.13)

(10.14)

(10.15)

(10.16)

(10.17)

(10.18)

(10.19)

(10.20)



dK _ B (S)A(5)-B(s)A(s) _,

ds A%(s)

10.2.9. Draw asymptotes to the root-locus

Angle of asymptotes

0
) :Mwhere, k=0, 1, 2, 3..
(n—m)

Location of asymptotes
k= 5P pp). (5= py)
(s-2)(5-2,)..(s-7,)

I +opy)s"
s"—(z,+2,+..2,)s" " +...

K =s"" —[(p + Py +...P,) = (2, + 2, +..2,)]8" ™+
S—P=S—o;
(s—z)=s-o,
_ n
:%: "M —(n-m)os" "+
s—o,

(P pytp) (4 + 2, +..2,)
B (n—m)

O

Angle of departure

6, =180—-(6,+6,)+¢,
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(10.21)

(10.22)

(10.23)

(10.24)
(10.25)

(10.26)

(10.27)

(10.28)

(10.29)
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(o]
064=180 - >angles of vectors to the complex open-loop pole in question from other open - loop poles
+ X angles of vectors to the complex open-loop pole in question from all open-loop zeros
Angle of arrival

0,=180— (¢ +¢,)+(6,+6,+6,) (10.30)

o]
6,=180 - >-angles of vectors to the complex open-loop zero in question from other open- loop zeros
+ > angles of vectors to the complex open-loop zero in question from all open-loop poles

Determine points on the root-locus crossing imaginary axis

Real[l+G(jo)H (jw)]=0 (10.31)
imaginary[l+ G(jo)H (jo)] =0 (10.32)
Example
Problem-1: Draw the root-locus of the feedback system whose open-loop transfer function is given
K
by G(s)H(s) =
y G(s)H(s) 61D

Solution:

Step 1: Determine the number of open-loop poles and zeros
Number of open-loop poles n=2

Number of open-loop zeros m=0

Open-loop poles: s=0 and s=-1



Step 2: Mark open-loop poles and zeros on the s-plane

Step 3: Determine parts of the root-locus on the real axis
Test points on the positive real axis

Test points in between the open-lop poles

Step 4: Determine breakaway and break-in point
Characteristic equation, K =-s(s+1)

d—K:—25+1:0
ds

breakaway point as cb:-0.5
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Gain at the breakaway point
K, =-0.5-0||-0.5-(-1)|=0.25

Step 5: Draw asymptotes of the root-locus
Angle of asymptotes:

180° + k360 180+ 360k

0,=0, =

(n—m) 2
0.=90° k=0
0. =270° k=1

Centroid of asymptotes

O

c

(h—m) 2

(PP tp) (B +2p+.2,) :O_l:—O.S
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Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need

not be computed

Step 8: Determine points on the root-locus crossing imaginary axis

1+GH =1+ =s’+s+K=0

s(s+1)
B(jo) = (jo)* +(jo) +K = (K ~0®) + jo
K-0’=0= jo=0

The root-locus does not cross the imaginary axis for any value of K>0
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Here,

o ~1EV1-4K
2

Problem-2: Draw the root-locus of the feedback system whose open-loop transfer function is given

K
by G(s)H(s):m

Solution:

Step 1: Determine the number of open-loop poles and zeros
Number of open-loop poles n=3

Number of open-loop zeros m=0

Open-loop poles: s=0, s=-2 and s=-4

Step 2: Mark open-loop poles and zeros on the s-plane

Step 3: Determine parts of the root-locus on the real axis
Test points on the positive real axis



Test points in between the open-lop poles

Step 4: Determine breakaway and break-in point
Characteristic equation, K =-s(s+2)(s+4)

%—K:—(s+2)(s+4)—s(s+4)—s(s+2):O

s

Breakaway point as ¢,=-0.85 and -3.15

op = —3.15 is not on the root-locus and therefore not a breakaway or break-in point

Gain at the breakaway point
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K, =/-0.85-0]|-0.855—(-2)||-0.85 - (-4)|=3.079

1 6 8 K
-0.85 -4.378 -3.079
1 5.15 3.622 K-3.079=0

Step 5: Draw asymptotes of the root-locus
Angle of asymptotes:

180° +k360 180 +360k
- (n—m) - 3
0.=60° k=0
0.=180° k =1
0. =300" k =2
Centroid of asymptotes

c

(o3

(Pt pptp) (B +2,+.2,) 0-2-4

c

(n—m)

3

-2

90

Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need

not be computed

Step 8: Determine points on the root-locus crossing imaginary axis

K

1+GH=1+——  =s+652+85+K =0

s(s+2)(s+4)

B(jo) = (jo)’ +6(jw)’ +8jo+K =(K -60?)+ j(8w—-0®)=0



When imaginary-part is zero, then o = J_r\/g =S= ij\/g and when real-part is zero,

then K = 60° =48.
The root-locus does not cross the imaginary axis for any value of K>48.

1 6 8 48
+j2.828 -8+j16.97 -48
1 6+j2.828 J16.97 0
1 6+j2.828 J16.97
-j2.828 [j16.97
1 6 0

Therefore, closed-loop pole on the real axis for K=48 at s =—6

No. Closed-loop po_Ie K Second and third Remarks
on the real axis closed- loop poles
1 -4.309 3.07 -0.85,-0.85 Already computed
2 -4.50 5.625 -0.754j0.829
3 -5.00 15 -0.54j1.6583
4 -5.50 28.875 -0.25+j2.2776
5 -6.00 48 +j2.8284 Already computed
6 -6.5 73.125 0.25+4)3.448
Determine the gain corresponding to s=-4.5
K=|-4.5-(-4)||-4.5-(-2)||-4.5-0|]= 5.625
$°+6s°+8s+K =0
1 6 8 K
-4.5 -6.75 -5.625
1 1.5 1.25 K-5.625=0

(s*+1.55+1.25) =0
S,5=-0.75+ j0.829
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Problem-3: Draw the root-locus of the feedback system whose open-loop transfer function is given

K
by GOH () =575 73
Solution:
Step 1: Determine the number of open-loop poles and zeros
Number of open-loop poles n=3
Number of open-loop zeros m=0
Open-loop poles: s=0, s=0 and s=-1
Step 2: Mark open-loop poles and zeros on the s-plane

Step 3: Determine parts of the root-locus on the real axis
Test points on the positive real axis
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Step 4: Determine breakaway and break-in point
Characteristic equation, K =—s?(s +1)

K _g

ds

= -25(s+1)-s=0
=s(-25-3)=0

Breakaway point as o,= -2/3and 0
o, = -2/3is not on the root-locus and therefore not a breakaway or break-in point.
Therefore op,= 0 and the two loci start from the origin and breakaway at the origin itself.

Step 5: Draw asymptotes of the root-locus
Angle of asymptotes:

, _180°+k360 _180:+360k

‘ (n—m) 3
0, =60° k =0
0, =180° k =1
0, =300° k =2

Centroid of asymptotes

o - (P+Pp+.P) - (B +2,+..2,) _0-1_ 1
‘ (n—m) 3 3

Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need
not be computed.



Step 8: Determine points on the root-locus crossing imaginary axis

B(s)=s*+s°+K

B(jo) = (jo)’ +(jo)* +K = (K -0°) - jo’
When imaginary-part is zero, then @ =0 = s =0and when real-part is zero,

then K = w® =0.

The root-locus does not cross the imaginary axis for any value of K>0.

Additional closed-loop poles

No. Closed-loop pole on the K Second and third
real axis closed- loop poles
1 -15 1.125 0.25+j0.82
2 -2.0 4 0.504j1.32
3 -2.5 9.375 0.75+j1.78
4 -3.0 18 1.00+j2.23
Determine the gain corresponding to s=-1.5
K=|-1.5-(-1)||-1.5-(0)|]-1.5-0|= 1.125
s +s%+1.125=0
1 1 0 1.125
-1.5 0.75 -1.125
1 -0.5 0.75 0

(s +1.55+1.25)=0
S,5=-0.25+ j0.82
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Problem-4: Draw the root-locus of the feedback system whose open-loop transfer function is given

K
by G(s)H (s) =
y GEHE) s* +55° +8s% + 65

Solution:

Step 1: Determine the number of open-loop poles and zeros

$* +55° +85° +65=5(s"+25+2)(s+3) =(s+1—j)(s+1+ j)(s+3)s
Number of open-loop poles n=4

Number of open-loop zeros m=0

Open-loop poles: s=0 and s=-3, s=-1+j and s=-1-j

Step 2: Mark open-loop poles and zeros on the s-plane

Step 3: Determine parts of the root-locus on the real axis
Test points on the positive real axis



Step 4: Determine breakaway and break-in point
Characteristic equation, K =—(s* +5s° +8s? + 65)
dK 0

ds

= 45 +15s2 +165+6=0
=53 +3.7552 +45+1.5=0

f'(s)=3s*+75s5+4
This equation is solved using Newton-Raphson’s method

n+l

~ f(s0)
n ;

f(s)
No. Sn f (Sn) f ,(Sn) Sn+l
1 -3.75 -13.5 18.0625 -3.0026
2 -3.0026 -3.7721 8.5273 -2.5602
3 -2.5602 -0.9421 4.4624 -2.3491
4 -2.3491 -0.1658 2.9364 -2.2926
5 -2.2926 -0.0103 2.5737 -2.2886

_ 5

6 2.2886 5.03x10

Breakaway point as c,= -2.3

Gain at the breakaway point, K =|-2.3—-(-3) || -2.3-0]|-2.3 - (-1+ j)||-2.3—(-1- j) |=4.33

K

-2.2886

-6.2053

-4.1073

-4.3316

96



1 2.7114 1.7947 1.8926 0
bJw
i 54
J
054
[
-0:5)
-1-5J
g'
Other closed-loop poles for K=4.3
1 2.7114 1.7947 1.893
-2.2886 -0.9676 -1.893
1 0.4228 0.8270 0
S, =-0.2114+j0.8814
Step 5: Draw asymptotes of the root-locus
Angle of asymptotes:
B 180° + k360 ~ 180+360k
¢ (n—m) 4
0, =45" k=0
0.=135" k =1
0. =225k =2
0.=315" k=3
Centroid of asymptotes
o - (P+Pp+-P)—(+2,+...2,) 0-3-1+j-1—] _ 15

c

(n—m) 4

ot
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Steps 6:Determine angles of departure

0, =180° — (135° + 26.56° + 90°) = —71.56° = 288.44°
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Step 7: As there are no complex open-loop zeros, angle of arrival need not be computed.

Step 8: Determine points on the root-locus crossing imaginary axis
B(s)=s"+55*+8s” +6s+ K
B(jo)=(jo)" +5(jo)’ +8(jo)’ +6jo+K = (0’ =80 + K) + j(6w —50°%)

When imaginary-part is zero, then o = J_r\/g =S= J_rj\/g and when real-part is zero,

2
then K :SX(QJ—(QJ =8.16.
5 5

There are two closed-loop poles on the imaginary axis for any value of K>0.
Additional closed-loop poles

No. | S S Saa K
1 -0.25 -2.9217 -0.9142+0.7969 1.0742
2 -0.50 -2.8804 -0.8098+0.655i 1.5625
3 -0.75 -2.8593 -0.6953+0.5938j 1.7930
4 -1.0 -2.8393 -0.5804+0.6063; 2.0000
5 -1.25 -2.8055 -0.4722+0.6631j 2.3242
6 -1.75 -2.6562 -0.3763+0.7354 2.8125
7 -2.0 -2.5214 -0.2393+0.8579 4.0
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Additional Information from Root-Locus Plot
1. Gain Margin

GM = 20log Rz
K

K is the gain of a feedback system at some point on the root-locus

K is the gain at which the system becomes unstable
2. Transient Characteristics

2
Where, B =tan™ “1;§

3. Percentage overshoot

4. Settling time

5. Steady-state error is also related to K.

Example

100

(10.33)

(10.34)

(10.35)

Problem-1: Draw the root-locus of the feedback system whose open-loop transfer function is given

K (32 +10s +100)
by G(s)H(s) =

yH(s)=1
s* +20s® +100s® +500s +1500 (s)

(@) Determine the value of gain at which the system will be stable and as well have a maximum

overshoot of 5%.
(b) What is the gain margin at this point?

(c) What is the steady-state error for a unit step excitation at the above point?

Solution:



tanf = =1.0487
(a) InM,
= B =46°
1
(=
JJl+tan B
(b) GM =20 Iog% =-2.65dB
261
(c) Position error
K (s* +10s +100) _ 100K

K =h =
s Islm s* +20s® +100s% +500s+1500 1500
Steady-state error,
1 1 1500
S.(:0) =——= =
1+ K, 1+100K /1500 1500+100K

S

_ 1500
1500 +100x 261

S, (0) =5.4%

=0.690

101
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Root locus

102

The locus of all the closed-loop poles for various values of the open-loop gain K is called root locus.
The root-locus method is developed by W.R. Evans in 1954. It helps to visualize the various
possibilities of transient response of stable systems.

Closed-loop response function

Characteristic equation

C(s)_  G(9)
R(s) 1+G(s)H(s)

1+G(s)H(s) =1+ K(s-z)(s—2,)--(s-2z) o
(5= P)(s—P,)-- (s~ Py)

Vector from open-loop pole to the root-locus

Vector from open-loop zero to the root-locus

Behaviors of closed-loop poles

(10.37)

(10.38)

Closed-loop poles negative Exponential decay Stable
and real

Closed-loop poles complex Decaying and oscillatory Stable
with negative real parts

Closed-loop poles positive and | Exponential increase Unstable
real

Closed-loop poles complex Exponential and oscillatory Unstable

with positive real parts

increase

BASIS for CONSTRUCTION
Construction steps

10. Determine the number of open-loop poles and zeros



11.
12.
13.
14.
15.
16.
17.
18.

Mark open-loop poles and zeros on the s-plane

Determine parts of the root-locus on the real axis
Determine breakaway and break-in points

Draw asymptotes to the root-locus

Determine angles of departure

Determine angles of arrival

Determine points on the root-locus crossing imaginary axis
Obtain additional points and complete the root-locus

Starting points
Characteristics equation of a closed-loop system

1+G(s)H(s) =1+ K(s-z)(s—2,)--(s-2z) o

(s=P)(s—P,)-(s = Py)

For K=0,

— (s=p)(S—Py)--(s—Pp,) +K(s=2))(s-2,)..(s-2) 0

(= P)(s = Py)--(s = Py)

= (5= p)(s—Py)-(s—p,)=0

103

(10.39)

(10.40)

Open-loop poles are also closed-loop poles for K=0. A root-locus starts from every open-loop pole.

Ending points
Characteristics equation of a closed-loop system

1+G(s)H(s) =1+ K(s-z)(s—2,)--(s-2z,) o

(s=P)(s—P,)--(s = Py)

For K=o,

- K(s-z)(s-2,)..(s-z,)
(5= p)(s—Py)--(s—p,)

=(s-z7)(s-1z,)..(s-z,)=0

Root-locus ends at an open-loop zero or at infinity.

Magnitude and angle criterion

1+G(s)H (s) =1+|G(s)H (s)|(cosy + jsiny) =0

Angle criterion:

n m

w=>06-> ¢;180° +360k

i-1 =1

Where, 6, = angle in case of i pole and ¢@;- angle in case of " zero

Magnitude criterion:

|G(s)H (s)| =1

Determining gain at a root-locus point

(10.41)

(10.42)

(10.43)

(10.44)

(10.45)
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Using the magnitude of vectors drawn from open-loop poles and zeros to the root-locus point, we get
n

H(S_pi)

il [S—P)lI(s=p)[-.[(S=p)l_

m = (10.46)
s—2)|Is-2,)].-.|(s-z
[e-z) |25 2)l-16-2)
j=1
Gain at a root-locus point is determined using synthetic division.
Example:
Determine K of the characteristic equation for the root s=-0.85.
Solution:
S3 4652 +8s+K=0 (10.47)

1 6 8 K
-0.85 -4.378 -3.079
1 5.15 3.622 K-3.079=0

Determine parts of the root-locus on the real axis

6. Start from open-loop poles on the real axis, extend on the real axis for increasing
values of the gain and end at an open-loop zero on the real axis.

7. Start from open-loop poles on the real axis, extend on the real axis for increasing
values of the gain and end at an infinite value on the real axis.

8. Start from a pair of open-loop poles on the real axis, extend on the real axis for
increasing values of gain, meet at a point and then leave the real axis and end at a
complex open-loop zero or infinity.

9. Start from a pair of open-loop poles on the real axis, extend on the real axis for
increasing values of gain, meet at a point and then leave the real axis. They may once
again enter the real axis and end at open-loop zeros or at a large value on the real axis.

10. Start from a pair of complex open-loop poles, enter the real axis and end at an open-
loop zero or an infinite value on the real axis. They could leave the real axis again and
end at a complex open-loop zero or infinity.

Angle contributions from complex poles
Complex poles and zeros do not contribute to the angle criterion on the real axis



Determine breakaway and break-in points of the root-locus

_1. kA6 _
1+G(s)H(s)=1+K B(S) =0

f(s)=B(s)+ KA(s)=0

__B®)
- As)

£(5) = (5=5) (5 =8,).(S — 5y 1) =0

% =r(s _Sl)r_l(s B SZ)"‘(S - Sn—r+1) +(s— Sl)r-(S - SS)"(S — Sn—r+1) 4.
df©)
ds |,

f'(s)=B(s)+ KA(s)=0

=K= —w
A(s)
Therefore,
B'(s)A(s)—B(s)A(s)=0

At breakaway and break-in points of the root-locus,

dK _ B(5)A(s)—B(s)A(s) 0

ds A%(s)

Draw asymptotes to the root-locus
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(10.48)

(10.49)

(10.50)

(10.51)

(10.52)

(10.53)

(10.54)

(10.55)

(10.56)

(10.57)
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Angle of asymptotes
~180° + k360

= where, k=0, 1, 2, 3..
(n—m)

Location of asymptotes

(=P =P 5= P,)

(10.58)
(s—z)(s-2,)..(s-2,)
n n-1
kS —(p,+ P, +...p,)S l+... (10.59)
S"—(z,+2,+..2,)s" " +..

K =" —[(py+ Py +..P,) = (2, + 2y + .2, )]s+ (10.60)
s—p ~s—o, (10.61)
(s—z)=s-o, (10.62)

_B20) _nem (o myg s (10.63)
(s—o)"
C:(p1+ Py +...p)—(z, + 2, +...2,) (10.64)

(n—m)

Angle of departure

0, =180— (6, +6,) + ¢, (10.65)
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o]
64=180 - >angles of vectors to the complex open-loop pole in question from other open - loop poles
+ > angles of vectors to the complex open-loop pole in question from all open-loop zeros
Angle of arrival

0,=180— (¢ +¢,)+(6,+6,+6,) (10.66)

o]
6,=180 - >-angles of vectors to the complex open-loop zero in question from other open- loop zeros
+ > angles of vectors to the complex open-loop zero in question from all open-loop poles

Determine points on the root-locus crossing imaginary axis

Real[l+G(jo)H (jw)]=0 (10.67)
imaginary[l+ G(jo)H (jo)] =0 (10.68)
Example
Problem-1: Draw the root-locus of the feedback system whose open-loop transfer function is given
K
by G(s)H(s) =
y G(s)H(s) 61D

Solution:

Step 1: Determine the number of open-loop poles and zeros
Number of open-loop poles n=2

Number of open-loop zeros m=0

Open-loop poles: s=0 and s=-1
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Step 2: Mark open-loop poles and zeros on the s-plane

Step 3: Determine parts of the root-locus on the real axis
Test points on the positive real axis

Test points in between the open-lop poles

Step 4: Determine breakaway and break-in point
Characteristic equation, K =-s(s+1)
dK

—=-25+1=0
ds

breakaway point as cb:-0.5

Gain at the breakaway point



109

K, =|-0.5-0]|-0.5— (-1)[= 0.25

Step 5: Draw asymptotes of the root-locus
Angle of asymptotes:

180° + k360 180+ 360k

0.=0, = =
(n—m) 2

0.=90° k=0

0. =270° k=1

Centroid of asymptotes
o. = (P + Py +.py) = (2 + 2, +...2,) :O_l:—O.S
(h—m) 2

Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need
not be computed

Step 8: Determine points on the root-locus crossing imaginary axis

1+GH =1+ =s24+s5s+K=0

s(s+1)
B(jo)=(jo)* +(jo) +K = (K -0*)+ jo
K-0’=0= jo=0
The root-locus does not cross the imaginary axis for any value of K>0
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Here,

o ~1EV1-4K

2

Problem-2: Draw the root-locus of the feedback system whose open-loop transfer function is given

by GEH(S) =

s(s+2)(s+4)

Solution:

Step 1: Determine the number of open-loop poles and zeros
Number of open-loop poles n=3

Number of open-loop zeros m=0

Open-loop poles: s=0, s=-2 and s=-4

Step 2: Mark open-loop poles and zeros on the s-plane

Step 3: Determine parts of the root-locus on the real axis
Test points on the positive real axis



111

Test points in between the open-lop poles

Step 4: Determine breakaway and break-in point
Characteristic equation, K =-s(s+2)(s+4)

%—K:—(s+2)(s+4)—s(s+4)—s(s+2):O

s

Breakaway point as 6,=-0.85 and -3.15

op = —3.15 is not on the root-locus and therefore not a breakaway or break-in point

Gain at the breakaway point



Ky =/-0.85-0(|-0.855— (~2) || -0.85 - (~4) |- 3.079

1 6 8 K
-0.85 -4.378 -3.079
1 5.15 3.622 K-3.079=0

Step 5: Draw asymptotes of the root-locus

Angle of asymptotes:

0 - 180° + k360 _180+360k
‘ (n—m) 3

0.=60° k=0

0.=180° k =1

0, = 300° k=2

Centroid of asymptotes

(e}

c

(n—m)

_ (p,+p,+...p,)—(z,+2,+...2,) _0-2-4_
3

-2
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Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need

not be computed

Step 8: Determine points on the root-locus crossing imaginary axis

1+GH :1+L:SS+652+SS+K:O

s(s+2)(s+4)

B(jo) = (jo)’ +6(jo)’ +8jo+K = (K —60*) + j(Bow—-»*)=0



When imaginary-part is zero, then o = J_r\/g =S= ij\/g and when real-part is zero,

then K = 60° =48.
The root-locus does not cross the imaginary axis for any value of K>48.

1 6 8 48
+j2.828 -8+j16.97 -48
1 6+j2.828 J16.97 0
1 6+j2.828 J16.97
-j2.828 [j16.97
1 6 0

Therefore, closed-loop pole on the real axis for K=48 at s =—6

No. Closed-loop po_Ie K Second and third Remarks
on the real axis closed- loop poles
1 -4.309 3.07 -0.85,-0.85 Already computed
2 -4.50 5.625 -0.754j0.829
3 -5.00 15 -0.54j1.6583
4 -5.50 28.875 -0.25+j2.2776
5 -6.00 48 +j2.8284 Already computed
6 -6.5 73.125 0.25+4)3.448
Determine the gain corresponding to s=-4.5
K=|-4.5-(-4)||-4.5-(-2)||-4.5-0|= 5.625
s*+6s?+85+K =0
1 6 8 K
-4.5 -6.75 -5.625
1 1.5 1.25 K-5.625=0

(s +1.55+1.25)=0
S,5=-0.75+ j0.829

113
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Problem-3: Draw the root-locus of the feedback system whose open-loop transfer function is given

K
by GOH () =525 73
Solution:
Step 1: Determine the number of open-loop poles and zeros
Number of open-loop poles n=3
Number of open-loop zeros m=0
Open-loop poles: s=0, s=0 and s=-1
Step 2: Mark open-loop poles and zeros on the s-plane

Step 3: Determine parts of the root-locus on the real axis
Test points on the positive real axis
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Step 4: Determine breakaway and break-in point
Characteristic equation, K =—-s?(s +1)

K _g

ds

= -25(s+1)-s=0
=s(-25-3)=0

Breakaway point as o,= -2/3and 0
o, = -2/3is not on the root-locus and therefore not a breakaway or break-in point.

Therefore o, = 0 and the two loci start from the origin and breakaway at the origin itself.

Step 5: Draw asymptotes of the root-locus
Angle of asymptotes:

, _180° +k360 _ 180:+360k

‘ (n—m) 3
0, =60° k=0
0, =180° k=1
0, =300° k =2

Centroid of asymptotes

o - (P+Pp+.P) (B +2,+..2,) _0-1_ 1
‘ (n—m) 3 3

Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need
not be computed.



Step 8: Determine points on the root-locus crossing imaginary axis

B(s)=s*+s°+K

B(jo) = (jo)’ +(jo)* +K = (K -0°) - jo’
When imaginary-part is zero, then @ =0 = s =0 and when real-part is zero,

then K = w® =0.

The root-locus does not cross the imaginary axis for any value of K>0.

Additional closed-loop poles

No. Closed-loop pole on the K Second and third
real axis closed- loop poles
1 -15 1.125 0.25+j0.82
2 -2.0 4 0.504j1.32
3 -2.5 9.375 0.75+j1.78
4 -3.0 18 1.00+j2.23
Determine the gain corresponding to s=-1.5
K=|-1.5-(-1)||-1.5-(0)|]-1.5-0|= 1.125
s +s%+1.125=0
1 1 0 1.125
-1.5 0.75 -1.125
1 -0.5 0.75 0

(s +1.55+1.25)=0
S,5=-0.25+ j0.82

116
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Problem-4: Draw the root-locus of the feedback system whose open-loop transfer function is given

K
by G(s)H (s) =
y GHE) s* +55° +8s% + 65

Solution:

Step 1: Determine the number of open-loop poles and zeros

$* +55° +85° +65=5(s"+25+2)(s+3) =(s+1—j)(s+1+ j)(s+3)s
Number of open-loop poles n=4

Number of open-loop zeros m=0

Open-loop poles: s=0 and s=-3, s=-1+j and s=-1-j

Step 2: Mark open-loop poles and zeros on the s-plane

Step 3: Determine parts of the root-locus on the real axis
Test points on the positive real axis



Step 4: Determine breakaway and break-in point
Characteristic equation, K =—(s* +5s> +8s? + 65)
dK 0

ds

= 45 +15s2 +165+6=0
=53 +3.7552 +45+1.5=0

f(s)=3s°+75s+4
This equation is solved using Newton-Raphson’s method

n+l

_ ()

Tf(s)
No. Sy f (Sn) f '(Sn) Snat
1 -3.75 -13.5 18.0625 -3.0026
2 -3.0026 | -3.7721 8.5273 -2.5602
3 -2.5602 | -0.9421 4.4624 -2.3491
4 -2.3491 | -0.1658 2.9364 -2.2926
5 -2.2926 | -0.0103 2.5737 -2.2886

5

6 -2.2886 5.03x10

Breakaway point as o,= -2.3

Gain at the breakaway point, K 5 -2.3—(-3)||-2.3-0]|-2.3—=(-1+ j)||-2.3-(-1- ) |=4.33

K

-2.2886

-6.2053

-4.1073

-4.3316
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1 2.7114 1.7947 1.8926 0
Other closed-loop poles for K=4.3
1 2.7114 1.7947 1.893
-2.2886 -0.9676 -1.893
1 0.4228 0.8270 0
S, =-0.2114+j0.8814
Step 5: Draw asymptotes of the root-locus
Angle of asymptotes:
0 - 180° + k360 ~ 180+360k
‘ (n—m) 4
0, =45" k=0
0.=135" k =1
0. =225k =2
0.=315" k=3
Centroid of asymptotes
_ (PP +p) (B +2,+..2,) 0-3-1+j-1-] _ 15

i (n—m)

4

119
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Steps 6: Determine angles of departure

0, =180° — (135° + 26.56° + 90°) = —71.56° = 288.44°



Step 7: As there are no complex open-loop zeros, angle of arrival need not be computed.

Step 8: Determine points on the root-locus crossing imaginary axis
B(s)=s"+5s*+8s” + 65+ K
B(jo)=(jo)" +5(jo)’ +8(jo)’ +6jo+K = (0’ =80 + K) + j(6w —50°%)

When imaginary-part is zero, then o = J_r\/g =S= J_rj\/g and when real-part is zero,

2
then K :SX(QJ—(QJ =8.16.
5 5

There are two closed-loop poles on the imaginary axis for any value of K>0.
Additional closed-loop poles

No. | S S Saa K
1 -0.25 -2.9217 -0.9142+0.7969 1.0742
2 -0.50 -2.8804 -0.8098+0.655i 1.5625
3 -0.75 -2.8593 -0.6953+0.5938j 1.7930
4 -1.0 -2.8393 -0.5804+0.6063; 2.0000
5 -1.25 -2.8055 -0.4722+0.6631j 2.3242
6 -1.75 -2.6562 -0.3763+0.7354 2.8125
7 -2.0 -2.5214 -0.2393+0.8579 4.0
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Additional Information from Root-Locus Plot
6. Gain Margin

GM = 20log Rz
K

1

K is the gain of a feedback system at some point on the root-locus

K is the gain at which the system becomes unstable
7. Transient Characteristics

2
Where, B =tan™ “1;§

8. Percentage overshoot

9. Settling time

10. Steady-state error is also related to K.

Example

122

(10.69)

(10.70)

(10.72)

Problem-1: Draw the root-locus of the feedback system whose open-loop transfer function is given

K (32 +10s +100)
s* +20s® +100s? +500s +1500

by G(s)H (s) =

H(s)=1

(@) Determine the value of gain at which the system will be stable and as well have a maximum

overshoot of 5%.
(b) What is the gain margin at this point?

(c) What is the steady-state error for a unit step excitation at the above point?

Solution:



tanf = =1.0487
(b) InM o
= B =46°
1
{ =
JJl+tan B
(b) GM =20 Iog% =-2.65dB
261
(c) Position error
. K(s2 +10s+100) 100K
K, = ||m 7 3 2 =
s»0 S +20s”+100s° +500s+1500 1500
Steady-state error,
1 1 1500
Se (Cx)) = = =
1+K, 1+100K /1500 1500+100K
Se () = 1500 =5.4%
1500 +100x 261

a. Root Locus using MATLAB

Program 1:Draw the root locus for the following system

Solution:
>> num=[01]

=0.690

K

(s+1)(s+2)(s+4)(s+5)
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num=
0 1

>>q1=[11];

>>q2=[12];

>>q3=[1 3];

>> q4=[1 4];
>>den=conv(ql,92);

>> den=conv(den,q3);

>> den=conv(den,q4);
den=

1 12 49 78
>>sys=tf(num,den)
Transfer function:

sM+12573+495"2+78s+40
>>rlocus(sys)

40
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11. Frequency Response Analysis
11.1. Frequency Response
This is defined as the steady-state response of a system due to a sinusoidal input.

X(s)—— C6) ——¥(s)

Here,
G(S):Eg - (s+a)(sN+(;))(s+c)... L)
=Cle)= (s+a;\|(£?§)((ss)+c)... 112

Let, r(t)=Asinat, then
R(S)= -2 (113)

Using eq (3) in eq (2),

N(s
C(s)= (s+a)(s +(b)(s+c)...[sziww2} (11.4)
=C(s)= siiaJrsﬁibJrsiic+"'+s+81ja)+s?2ja)
In time domain, eq (5) becomes
c(t)=Ae ™ +Ae ™+ Ae ™™ +..+ Be ' + B,e (11.5)

The term with A terms are decaying components. So, they tend to zero as time tends to infinity.
Then, eq (5) becomes

Cy(t)=Be ' + B,/ (11.6)
Where,
_ A(L)G(S) :i|G(_ja))|ej4G(—jw)
STIOg 2 (11.7)
B, = Aa)G.(S) :A. G(ja))|ej4(3(jw)
s+jo |, 2]

Since, |G (jo)|=|G(-jo)| and £G(-jo)=£G(jw)=¢
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o(t) :%s (jo)e i) +2_Aj|e(j@)|ei<w‘+¢> (11.8)
=c(t)=-AlG (jo)e" {%} (11.9)

= c(t)=AlG(jo)[sin(wt+¢) (11.10)
=c(t)=B(w)sin(at +¢) (11.11)

Where, B(w)=A[G(jo)|

Therefore, the steady-state response of the system for a sinusoidal input of magnitude A and
frequency o is a sinusoidal output with a magnitude B(a)) frequency @ and phase shift ¢ .

The following plots are used in frequency response.

e Polar plot
e Bode plot
e Magnitude versus phase angle plot
11.2. Definition of frequency domain specifications

M A

M,

0.707

(i) Resonant peak (M, ): Maximum value of M ( jo) when o is varied from 0 to .

(if) Resonant frequency (car) : The frequency at which M, occurs

(iii) Cut-off frequency (e, ) : The frequency at which M ( je) has a value L tisthe frequency

V2

at which the magnitude is 3dB below its zero frequency value
(iv) Band-width (ca[,) It is the range of frequencies in which the magnitude of a closed-loop

system is = times of M,

V2
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(v) Phase cross-over frequency: The frequency at which phase plot crosses -180°

(vi) Gain margin (GM): It is the increase in open-loop gain in dB required to drive the closed-loop
system to the verge of instability

(vii) Gain cross-over frequency: The frequency at which gain or magnitude plot crosses 0dB line

(viii) Phase margin (PM): It is the increase in open-loop phase shift in degree required to

drive the closed-loop system to the verge of instability

11.3. Correlation between time and frequency response
For a second order system

C 2
(5)_ R (11.12)
R(s) s*+2w,s+a;
Putting S= jo
Cio) _ oy
R(jo) o -0®+j2w,0
C(jo) 1 (11.13)
N _

QIR

Let, u :ﬂ, then

wn
C(jo) 1
R(jo) _(1—u2)+ j2cu (149
Now,
M (jo)=|M (jo)|2M (jo) (11.15)
Where,
. 1
M (jo)=—; :
\/(l‘” ) +(2¢u) (11.16)
9:—tan‘l(£uzj
1-u
Now,
M, SN S (11.17)
20\1-¢°

o, = 0,\[1-2¢? (11.18)
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wb:wn\/1—2§2+«/4§4—4§2+2 (11.19)

PM =-180° + ¢ (11.20)

Where, ¢ =tan™

2¢
\/~/4g2 +1-2¢°

11.4. Advantages
e (Good accuracy

e Possible to test in lab

o Can be used to obtain transfer function that is not possible with analytical techniques

o FEasy to design open-loop transfer function from closed-loop performance in frequency
domain

e Itisvery easy to visualize the effect of disturbance and parameter variations.

11.5. Disadvantages
o Applied only to linear systems

o Frequency response for existing system is possible to obtain if the time constant is up to few
minutes

e Time consuming procedure

e Old and back dated method

ion I :



12. Bode Plots
12.1. Magnitude plot and phase plot on a semi-log paper
Magnitude plot on a semi-log paper

40

-

Magnibuds, d8
=]

=40 il
L 10° 0 1

M =20log | G(jw)H (jw)|dB

Phase plot on a semi-log paper

129



12.2. Magnitude versus phase Bode plot Nichols plot

20
15}
Ir_.:l"
m 5..
=
1]
=1
2 0
i=
=
]
= 5l
10}
15|
180
20 = ]
0 &0 100 150 200 250 300 as0

Phase, degrees

Table 12.1 Basic frequency response factors

130

No | Laplace term Frequency response Type of factor
1 K K Constant
2 S jo Derivative factor
3 s 1 jo Integral factor
4 15+l (1+ jor) First order derivative factor
5 1/(ts+1) U1+ jor) First order integral factor
6 | S*+2w,5+0) | 0 -0+ 20,0 Second order derivative factor
7 > L > 3 L - Second order integral factor
S+ 26w, S+w, | o) —0° + j2c0,0




12.3. Derivative factor: magnitude

M =20log| jw|=20logw dB

ZLjow =90°

AM =20log w, —20log @, = 20log 2 dB/decade
o)

AM =201log10 = 20 dB/decade

AM =20log 2 ~ 6 dB/octave
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(12.1)

(12.2)

(12.3)

(12.4)

(12.5)

Table 12.2 Magnitude variation of a derivative factor for various multiples of the initial

frequency
@,
— 2 3 4 5 6 7 8 9 10
2]
AM dB 6 10 12 14 16 17 18 19 20
40
Derivative factor
3,0.
20+
g
;E; 10
2
|:|. .1
10/ : 20 dB/decade
[ B dBvoctave
1 10" 10 10’

Fraquency, radis



12.4. Derivative Factor: (phase)

250!

300+

250+

[ ]
=1
o

Angle, degreas

=
n
(=]

100}

504

Table 15.3Derivative factor

Frequency, radis

10"

Frequency, rad/s
0.1 1 10 | 30 | 100
Magnitude, dB -20 0 20 | 30 40
Phase, degrees 90 90 | 90 | 90 90
12.5. Integral factor: magnitude
M =20log i‘ —20logw dB
jo
ZLjw =2170°

AM =-20log w, + 20log @, =—20log 22 dB/decade
o)

AM =-20log10 =-20dB/decade

AM =20log 2 ~ —6 dB/octave
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(12.6)

(12.7)

(12.8)

(12.9)

(12.10)



10: -20 dB/decade

A0k . - |
10 10
Frequency, rad's
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Table 12.4Magnitude variation of an integral factor for various multiples of the initial frequency

W,
— 1 2 3 4 5 6 7 8 9 10
2]

AM ,dB| O -6 -10 -12 -14 -16 -17 -18 -19 -20

12.6. Integral factor: phase

350

300}

250

rJ

[=3

k=]
T

Angle, degrees

-
L
k=

-7

100}

S0}

Frequency, radfs

10'

1w
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Table 12.5Bode magnitude and phase of an integral factor

Frequency, rad/s

01 |1 10 (20 | 100

Magnitude, dB | 20 | 0 -20 | -26 | -40

Phase, degrees | 270 | 270 | 270 | 270 | 270

12.7. First-order derivative factor: magnitude

M =20log/1+ jrr| = 20log(\/i+[wz] dB (12.11)
For o<<w , M=0 dB
C
For o>>w ,
C
M ~ 20log-2 dB (12.12)
Q,

C

Here, ® =1/t = corner frequency
C

For o>w
C
AM =20log @, — 20log e, = 20log <2 (12.13)
2]
AM =201log10 = 20 dB/decade (12.14)
AM =20log 2 ~ 6 dB/octave (12.15)

Table 12.6Magnitude variation of a first-order derivative factor for various multiples of the corner

frequency
0]
— 1 2 3 4 5 6 7 8 9 10
a)C
A dl\g ’ 0 6 10 12 14 16 17 18 19 20
12.8. First-order derivative factor: phase
0 = A1+ jor =arctan(wr) (12.16)
0~0 YW < We
10
=45 1+10g- 2 | % cw<10w, (12.17)
@, 10

0 ~90 ;W > 10w,
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Table 12.7Phase angles of a first-order derivative factor around the corner frequency

w
— 1 2 3 4 5 6 7 8 9 10
a)C
0 ,deg | 45 59 66 72 76 80 83 86 88 90
w
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
C
0, deg 0 2 4 7 10 14 18 24 31 45

12.9. First-order derivative factor
For z =1

Table 15.8Bode magnitude and phase

Frequency, rad/s

011 |5 |10 20| 100

Magnitude, dB | 0 3 |14(20| 26| 40

Phase, degrees | 0 45 |76 190 | 90 | 90

First-order derivative factor: magnitude (3 dB correction at the corner frequency)

45 . R

40

35

Magnitude, dB
M ] L2
=] i =}
T

'y
Cn
|

—
L=
T

10° 10° 10" 10 10' 107
Freguency, rad/s



First-order derivative Factor: phase
80 —r—trrrr . T s |
80|
First order dedivative factor tau=1

70

B0 -

50 - .ﬂ-pprmdﬁtal:a

Fhasa

40+

304

104

12.10. First-order integral factor: magnitude

M =20log ——|=20log ;2 dB
1+ ot J1+[o7]
M =0, W << W,

M z—ZOIogﬂdB, W >> W,
wC

AM =-20log w, + 20log @, =—20log 22 dB/decade
o)

AM =-20log 2 ~ —6 dB/octave
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10°

(12.18)

(12.19)

(12.20)

(12.21)

Table 12.9Magnitude variation of a first-order integral factor for various multiples of the corner

frequency

0]

— 1 2 3 4 5 6 7 8 9 10
a)C

Adl\él’ 0 6| -10| -12| -14| -16| -17| -18 | -19| -20




Table 12.10Phase angles of a first-order integral factor around the corner frequency
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0]
— 1 2 3 4 5 6 7 8 9 10
a)C
6 deg 315 301 294 288 284 280 277 274 272 270
w
P 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
C
6 deg 360 358 356 353 350 346 342 336 329 315

First-order integral factor: phase
0=360, w<w /10

0 =360 45° {1 +log ﬂj , 010<0<10 w;

@

0 =360 — 45° {1+ |ogﬂj

@

6=270, ®>10 o

Table 12.11Bode magnitude and phase of a first-order integral factor

Frequency, rad/s

0010107 |1 7 |10 |20 | 100
Magnitude, dB | 0 0 -2 | -3 |-17 | -20 | -26 | -40
Phase, degrees | 360 | 360 | 322 | 315 | 277 | 270 | 270 | 270

First-order integral factor: magnitude



gyl
First order inbegral Eecior laus

A0t

A5l

First-order integral factor: phase

Approxmabe
4

i

First crder indegral factor tau=1
/

Exact

g

Phase degrees
= &

g

P i i il
0 ] L]

12.12. Second-order derivative factor: magnitude

For w>>w,

M =20log| w? —@® + j2lww, |

2 2 2
_ 20l0g| of [M_j +[z;£]
w [0)

n n

M = 40logw,, , W << W,
M = 20log (2zw,?),w =w
M =40 logw,w >>w,,

n

iy w' 10 10 1w

138

(12.22)

(12.23)
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AM = 40log w, — 40log o, = 40log 2 dB/decade (12.24)
1
AM =40log10 = 40 dB/decade (12.25)
AM = 40log 2 ~12 dB/octave (12.26)
Magnitude variation of a second-order derivative factor for various multiples of the resonant
frequency
0]
— 1 2 3 4 5 6 7 8 9 10
a)n
AM dB 0 12 20 24 28 32 34 36 38 40

Second-order derivative factor: phase

20 2
0=/|w -0’ + j2lown, |=arctan w; (12.27)
-
wn
9=0°, w<oh
10
6=90°, w=w, (12.28)

6=180°, w>10w,

Bode magnitude and phase

on=1 rad/s, (=0.3

Frequency, rad/s 0.01 |01 |07 1 3 10 100

Magnitude, dB 0 0 -4 -4 18 40 80

Phase, degrees 0 0 39 90 167 180 | 180
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e Geuond oeder Gerresiee Inoiar
Aponance Tegancyn | idh

Damping facsarsd 3
L2
5
: "
e
=

Appromest
10 10 10 |

180
Second oider dervative facior ;
160 Resanance Heqaency = 1 ads Approndmate
Damping factor= 0.3
140
120 Eumct
I O NI 0 O R Ll
:
s
[ )
40
h
Apr CRTiate
20k
Appromimate 4 Resonance frequency
10 10 10 10 o ““'I-.CI o
Frequency, mid's
Second-order integral factor
| 1| 1
M =20log|———— dB =20log dB (12.29)
|a)n—a) + j2loo, 2\? 2
2 0} 0}
a)n wn

M= - 40log @y, ®<<my,
M=-20log (2{mn2), ®= oy

M= - 40 log ®, ®>>wm,

AM =—-40log w, + 40log @, =—-40 Iog&dB / decade (12.30)
2]



AM =-4010g10dB =

40dB
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(12.31)

Magnitude variation of a second-order integral factor for various multiples of the resonant frequency

0]
— 1 2 3 4 5 6 7 8 9 10
a)n
Acl}/lB 0 -12 -20 -24 -28 -32 -34 -36 -38 -40
o “,
0=2|——F— =360 —arctan Dy
|a)n—a) + J2lwm, 19"
;
0=0, w<w,
0=270°, w=a,
0=180°, w>an
Bode magnitude and phase
Frequency, rad/s 001 (01 |07 1 3 10 100
Magnitude, dB 0 0 4 4 -18 -40 | -80
Phase, degrees 360 360 | 321 270 | 193 180 | 180

Magnitude plot

(12.32)
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10 T
]
i
)
0 < T
I LA WY
Approximabe i
=10 i
| ]
(]
(]
-20 Second order integral facior :
Resonance freguency=1 radss '
@ Damping facior=0,3 H
a0t H 4
B i
2 i
= '
5‘-40 :
M
500 A4 -0 dBidecage
Resonance :
frequenty i
80} i
i
]
| i
J0F i
'
'
L]
80 L )
10 10" 10 10 10 10
Frequency, rad’s
Phase plot
150 - = — s or o wse
Approsimate
40+ |
Second order integral factor Vo |
320~ Resonancs frequency=1 radk i ]
Dampng facor=0.3 || Appeasrnate
L
A0 - !_ 1
3 || "eme
gm-
ﬁ?ﬂl}-
T4 {
220} {
REsadns
200 frecuensy |
\ Approgimale
1B ettt i b iedieicel I 3 Fin. i 3
10 107 10 g 10 10°
Froguasncy, radis

Example 14.1
Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine

gain margin, phase margin and absolute stability?

1

COHE) = s(s+1)

Solution

Applying s= jo,



G(J’Ct))H(J'@):j

o(jo+1)
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The above frequency response function has two factors: (1) Integral factor and (2) First order integral
factor with a corner frequency of 1 rad/s

Bode magnitude of the transfer function

Frequency, radians/s

0.01 0.1 1 10 100
1 40 20 0 -20 -40
20log—dB
jo
1 0 0 -3 -20 -40
20log - dB
jo+1
Magnitude, dB 40 20 -3 -40 -80
o= 100 rad/s
Frequency, rad/s
0.01 0.1 1 10 100
1
41.—(0 degrees 270 270 270 270 270
VA degrees 360 360 315 270 270
Jo+
Bode phase, degrees 270 270 225 180 180




A0 T ——rr

20

* Approximate

 Gain cioss®
- frequency |
0.8 rad/s.

Magnitude, dB

100 BER PG PEiiiy P & Bd P :

“*x __E:-:act G{rﬂlezﬂs[ﬁH]

144

10° 10" 10 10’
Frequency, rad/s

Magnitude, dB

B0

Phase margin 52°

-1 1 1 1 1 1
0?&0 190 200 210 220 230 240 250 260
Phase, degreas

270

80 dB
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Example 14.2
Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine

gain margin, phase margin and absolute stability?

1
CEHE) = s(s+2)(s+4))
Solution
G(jo)H (jo) = .

8ja)(jw+l)(jw+lj
2 4

The corner frequencies corresponding to first order integral factors are 2 rad/s and 4 rad/s. Minimum
frequency is chosen as 0.01 rad/s and maximum frequency 100 rad/s.

Table 14.1 Computation of Bode magnitude using asymptotic properties of the integral first-order

1

termz =—

2
x1 X2 x1 x10 X2 x1 x1 X2 x1 x10
Frequency, rad/s 2 4 2 20 20 10 20 40 10 100
Magnitude, dB 0 -6 0 -20 -20 -14 -20 -26 -14 -34

Table 14.2 Computation of Bode magnitude using asymptotic properties of the integral first-order

1
termt =—
4
x1 | x10 X2 x1 X2 x1 x1 x10
Frequency, rad/s 4 40 40 20 20 10 10 100
Magnitude, dB 0 -20 -20 -14 -14 -8 -8 -28
Table 12.3 Bode magnitude
Frequency, rad/s
Factor 0.01 0.1 02 (04 |1 2 4 10 |20 |40 100
1 -18 -18 -18 | -18 | -18 | -18 | -18 |-18 | -18 |-18 |-18
20log=
8
1 40 20 14 |8 0 -6 |-12 |-20 | -26 |-32 |-40
20log—
Jo
1 0 0 0 0 -1 |-3 |6 |-14 |-20 |-26 |-34
201log —
19
2
1 0 0 0 0 0 -1 |-3 |-8 |-14 |-20 |-28
20log—
1941
4
Bode 22 2 -4 |-10 |-18 |-28 |-39 |-60 |-78 |-96 |-120
magnitude,
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dB

Bode magnitude

G A T o)

Gl CTOASOVET
frequency=0.125 ds

i- Approsmale Gain
2 f margin
] 32 dB
= <30
10 o [}
TequUey , Tl
Bode phase
Frequency, rad/s
Factor 001 |01 |02 |04 |1 2 4 10 20 |40 | 100
Ll 0 0 0 0 0 0 0 0 0 0 0
8
y 1 270 270 | 270 | 270 | 270 | 270 | 270 270 | 270 | 270 | 270
jo
y 1 360 360 | 360 | 346 | 328 | 315 | 301 284 | 270 | 270 | 270
19
2
y 1 360 360 | 360 | 360 | 342 | 326 | 315 297 | 285 | 270 | 270
19
4
Phase 270 270 | 270 | 256 | 220 | 191 | 166 131 | 105 |90 |90
degrees

Phase plot
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GisiHis=1/sse 2Hs+d)

Frequency, rad’s
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Bode plot
30, ;
!
(]
!
20+ :
i
(]
i
10} ]
]
i
1
":'""“""""'I'"""I"T"“"“"""""""""""" i
Gain i
A0} Margin | 4
10 Gain
% Malrgin (Approxi) E
] "
5-20- e 32 dB- E Approdmate
B 34 dB i/ _
=
-30| i Exact o
L 82 .
i H : Ll
-40 | r Phase Margin {Exact) "
]
Le - - -
50/ ' Phase Margin (Approximate) _ o
! 85
!
8oL ] 1
1
(]
(]
-ToL i . | ] | 1 el L
120 140 160 180 200 220 240 260 280
Phase, degrees
Example 12.1

Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine
gain margin, phase margin and absolute stability?

G(s)H(s)=ﬁ

Solution
1
(jo)(jo)(jo+1)

There are two integral factors and an integral first-order term with a corner frequency of 1 rad/s
Bode magnitude

G(jo)H (jw) =

Frequency, rad/s
0.01 0.1 1 10 100
1
20log—adB 40 20 0 -20 -40
jo
1
20log o dB 40 20 0 -20 -40




1
20log - dB 0 0 -3 -20 -40
jo+1
Bode magnitude, dB 80 40 -3 -60 -120

Example 12.2

149

Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine

gain margin, phase margin and absolute stability?

1
G(S)H(S)_s4+553+832+63
Solution
1

GEME) = s(s? +2s+2)(s+3)

. . 1
G(jw)H (jo)=

O (0 + 2(jo) + 2) (o) + 3

1

G(jw)H (jo) = 3

jo((2-0)+ j2w)+2)(j%+1)

Comparing the second order term with a standard second order term,

0} -0’ + j2¢oo,
1

o, =~N2and¢{ =—.
"%

For the first order integral factor, w.=3 rad/s

For (> 0.5, the response at resonance is less than theresponse at frequencies less than the resonant

frequencies

Table Computation of Bode magnitude using asymptotic properties of the integral second-order term

x1 | x10 x1 X2 x3 | x1 x1 | x10 X3 x1
Frequency, rad/s | 1.4 | 14 14 30 30 | 10 10 | 100 30 3
Magnitude, dB -6 | -46 -46 | -58 58 | 38 -38 | -78 -58 | -18

Table Computation of Bode magnitude using asymptotic properties of the integral first-order term

x1 | x3 X2 x1 X3 x1 x1 x10
Frequency, rad/s | 3 30 30 14 30 10 10 100
Magnitude, dB | 0 -20 -20 -14 -20 -10 -10 -30




Bode magnitude
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Frequency, rad/s
on | O
00101 (014 |03 |1 \/E 3 10 |14 30 100
1 -10 |-10 |-10 -10 | -10 | -10 | -10 | -10 | -10 -10 -10
20log=
3
1 40 20 17 10 |0 -3 |-10 |-20 | -23 -30 -40
20log—
Jo
1 -6 -6 -6 -6 6 |9 |-18 |-38 |-46 -58 -78
20log —
(2-0)+j(2w))
1 0 0 0 0 0 -1 -3 -10 | -14 -20 -30
20log
0]
j—+1
3
Bode magnitude, dB 24 4 1 -6 -16 | -23 | -41 | -78 | -93 -118 -158
40
L ot GisIHis)=1/5(52+ 25+ 2)5+3)
20 Approximate
1] S a——— e e i “:“--..__._:: ............. I;:.:----.-‘.--.
Gain crossover ——__ ain margin
frequency 0.158 radis Y18 dB
3 20 N
i
£ N
£ .0}
B0 b
-\"\
-80
A0 = bl I |
10 10 10

Frequency. rads
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Bode phase
Frequency, rad/s
Mn (%
0.01 (0.1 0.14 0.3 1 J2 |3 10 14 30 100
1 0 0 0 0 0 0 0 0 0 0 0
/=
1 270 | 270 | 270 270 | 270 | 270 |270 |270 |270 |270 270
Z— degrees
jo
p 1 360 |360 | 360 343 | 297 | 270 | 221 |192 |180 |180 180
(2-0)+j@w))
degrees
360 | 360 | 360 360 [336 |330 |315 |291 |285 |270 270
4 , degrees
.
j—+1
3
Bode phase, degrees | 270 | 270 | 250 253 183 | 150 |8 |33 15 0 0

300 -
- prosimaie GisIH{s)=1/45(52+ 25+ 2){5+2)
250 Exact
Phase P
margin 71
200
180
(L]
]
2
o 150
&
2
[+
100
=0
10 10 10 10

Freguency, radis




Nichols plot

H
[
H

el 1 Prase WMargs
i

f 7"°

e

Magnilude, 48

13. Polar Plots

280
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It is a graphical method of determining stability of feedback control systems by using the polar plot of

their open-loop transfer functions.

Example 13.1
Draw a polar plot of the open-loop transfer functionfor
GOHE) =
s(s+1)
Frequency response
G(jo)H(jo)=——
(Jo)H (jo) iolio D)
Magnitude
. K
G(jo)H (0)|=—F—
| | o1+ o
Angle

LG(jw)H(ja))z—%—tan‘la)

270° < £G(jw)H (jo) <180°

Magnitude and phaseof the open-loopfrequency transfer function

No. Frequency, Magnitude Phase,
rad/s degrees
1 0 0 270

(14.33)

(14.34)

(14.35)

(14.36)

(14.37)



2 0.2 4.9029 259
3 0.4 2.3212 248
4 0.8 0.9761 231
5 1 0.7071 225
6 4 0.0606 194
7 10 0.01 186
8 50 0.0004 181
9 100 0.0001 181
10 200 =0 ~180
Polar plot of the transfer function s(s+1) and K=1

Example 14.2

/'

w=0.2

Draw a polar plot of the open-loop transfer functionfor K=1, 10, 25, 55

3 K
s(s+2)(s+4)
Solution
Frequency response

G(jo)H (jo) =

jo(jo+2)(jo+4)

153



Magnitude

. . K
G(jo)H(jo)|=
| | oo + 4\ w* +16
Angle

. . /4 w 0]

/G H =—Z _tant=—tant=

(jo)H(jo) 5 5 2

The lies in Il and 111 quadrants as 90° < ZG(jo)H (jo) < 270°
Magnitude and phase of the open-loop frequencytransfer function (K=1)

No. | Frequency, | Magnitude | Phase,
rad/s degrees

1 0.1 1.2481 266

2 0.2 0.6211 261

4 0.4 0.3049 253

5 0.8 0.1423 237

6 1 0.1085 229

7 4 0.0099 162

8 10 0.0009 123

9 50 0 97

Polar plot of the transfer function GH :m for K=1, 10, 25, 55

Example 14.3

Draw a polar plot of the open-loop transfer function G(s)H (s) =

270

_K
s?(s+1)

154



Solution
Frequency response
. . K
G(joH(jo)="—————=
(jo)*(jo+1)
Magnitude

G(j@)H (jo) = ————

o No
Angle

2

+1

£G(jo)H (jo) =-180° —tan "
The lies in Il quadrant only as 90° < /G (jo)H (jw) <180°
Magnitude and phase of the open-loop frequency transfer function (K=1)

Noo | TTEREE | masnitude | GO
1 0.4 5.803 158
2 0.5 3.5777 153
4 0.8 1.2201 141
5 1 0.7071 135
6 2 0.1118 117
7 3 0.0351 108
8 4 0.0152 104
9 5 0.0078 101

Polar plot of the transfer function GH =

s(s+2)(s+4)

for K=1, 10, 25, 55
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180

270

Equation Chapter (Next) Section 1
Bode plot using MATLAB
: . C(s) 40

Program 1: Sketch the bode plot for the open loop transfer function = .
R(s) s(s+1)(s+4)

Determine the gain margin, phase margin, gain cross over frequency and phase cross over frequency.

Solution:

>> num=[0 40]

num=

0 40

>> ql=[10];

>> q2=[1 1];

>> 3=[1 4];

>> den=conv(gl,q2);

>> den=conv(den,q3);

den=

1 9 24 16 0

>>sys=tf(num,den)

Transfer function:

sM+9s"3+245"2+16s
>>hode(sys)
>>margin(sys)
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14. Nyquist plot
14.1.Definition
Nyquist criterion is a graphical method of determining stability of feedback control systems
by using the Nyquist plot of their open-loop transfer functions.

14.2. Theory
Feedback transfer function

C(s)_  G(s)
R(s) 1+G(s)H(s)

(14.1)

Poles and zeros of theopen-loop transfer function

K(S—2)(5—2,)..(S—2,)
G(s)H = 14.2
B )= e p 5= po)(s—po) (142

L G H (s) - S P P2) (5= Py) T K(S=2)(5=25). (5 2,) 143
(5= P(s= P2 (5~ Py)

Number of closed-loop poles - Number of zeros of 1+GH = N umber of open-loop poles

(s—27)(s-2,)(5-7)

1+G(s)H(s) = (14.9)
(5= P)(S—P2)-(S—Py)
2,2, ..z, = zeros of 1+G(s)H(s)
These are also poles of the close-loop transfer function
Magnitude
‘s— zcle -7, ...‘s— Z,
1+G(s)H (s)|= 2 " (14.5)
(s=p)l(s=py)|-|(s=p,)].
Angle
£8—-17,/45-1, /S~
Z1+G(s)H(s) = : : (14.6)

Z(s=p)4(s=p2)4(s—p,)

The s-plane to 1+GH plane mappingphase angle of the 1+G(s)H(s) vector, corresponding to a point on
the s-plane is the difference between the sum of the phase of all vectors drawn from zeros of
1+GH(close loop poles) and open loops on the s plane. If this point s is moved along a closed contour
enclosing any or all of theabove zeros and poles, only the phase of the vector of each of the enclosed
zeros or open-loop poles will change by 360°. The directionwill be in the same sense of the contour
enclosing zeros and in the opposite sense for the contour enclosing open-loop poles.
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14.3.Principle of argument

When a closed contour in the s-plane encloses a certain number of poles and zeros of 1+G(s)H(s) in
the clockwise direction, the number ofencirclements of the origin by the corresponding contour in the

G(s)H(s)plane will encircle the point (-1,0) a number of times given by thedifference between the
number of its zeros and poles of 1+G(s)H(s) it enclosed on the s-plane.
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GH from the polar plot

\

————1 Magnitude zero since n >m

\

GH from the mirror image of the
polar plot

Modified contour on the s-plane forchecking the existence of closed-looppoles
s=cge/’

Magnitude of GH remains the same alongthe contourPhase of g changes from 270 to 90 degrees

14.4.Gain Margin and Phase Margin
Phase crossover frequency a,, is the frequency at which the open-loop transfer function has a phase of

180°. The gain crossover frequency @, is the frequency at whichthe open-loop transfer function has a
unit gain

Gain margin
M =-20l0g|G(ja,)H(jo,)| (14.7)

Phase margin
y = LG(ja)g)H (ja)g)—180° (14.8)



14.5.Procedure

(1)
()
3)
(4)

Q)

(6)
@)

Locate open-loop poles on the s-plane

Draw the closed contour and avoid open-loop poles on the imaginary axis

Count the number of open-loop poles enclosed in the above contour of step 2, say P
Plot G(jo)H(jw) and its reflection on the GH plane and map part of the small semi-circle
detour on the s-plane around poles (if any) on the imaginary axis.

Once the entire s-plane contour is mapped on to the GH plane, count the number of
encirclements of the point (-1,0) and its direction. Clockwise encirclement is considered
positive, say N.

The number of closed-loop poles in the right-half s-plane is given by Z=N+P. if Z >0, the
system is unstable.

Determine gain margin, phase margin, and critical value of open-loop gain.

160



Example 14.1
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Using Nyquist criterion, determine the stability of a feedback systemwhose open-loop transfer
function is given by

G(s)H(s) =

K

s(s+1)

Solution

Step 1Locate open-loop poles on the s-plane. Open-loop poles are at s=0 and —1. Let K=1
Step 2 Draw the closed contour on the s-plane to check the existenceof closed-loop poles in the right-

half s-plane.

Open-loop poles and s-plane contour

. 1
‘G(JCO)H (a))\ = a)l—\/?a)z
£G(jo)H (jo) = —%— tan"
No. | Frequency, Magnitude Phase, B, GH plane,
rad/s degrees |, s-plane, deg|deg
1 0.2 Positive 4.9029 259 270 101
frequencies
2 0.4 2.3212 248 280 91
3 0.8 0.9761 231 290 80
4 1 0.7071 225 300 69
5 4 0.0606 194 310 58
6 10 0.01 186 320 46
7 50 0.0004 181 330 35
8 100 0.0001 181 340 23
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9 200 0 180 350 12
10 -200 Negative 0 180 0 0
frequencies

11 -100 0.0001 179 10 348
12 -50 0.0004 179 20 337
13 -10 0.01 174 30 325
14 -4 0.0606 166 40 314
15 -1 0.7071 135 50 302
16 -0.8 0.9761 129 60 291
17 -0.4 2.3212 112 70 280
18 0.2 4.9029 101 80 269

The above system is stable. Here, phase crossover frequency is very large (infinity) and gain
crossover frequency 0.786 rad/s. Phase angle corresponding to gain crossover frequency= 232%nd

Phase margin is 52°

Example 14.2.
Using Nyquist criterion, determine the stability of a feedback systemwhose open-loop transfer
function is given by

G(S) H (5) = L

s(s+2)(s+4)

Solution

Step 1Locate open-loop poles on the s-plane. Open-loop poles are at s=0, -2 and —4. Let K=1

Step 2 Draw the closed contour on the s-plane to check the existenceof closed-loop poles in the right-
half s-plane.

Open-loop poles and s-plane contour



The number of open-loop pole enclosed, P is zero

G(jo)H (jo)|=

K

oo + 4y w? +16
) ) T ® ®
/G(jo)H =———tan"——tan" —
(jo)H(jo) 5 5 2

No. Phase, [B, s-plane,
Frequency Magnitude | degrees |deg

1 1.5 | Positive 3.4332 213 270
2 2 frequencies 2.1741 198 280
3 2.5 1.4568 187 290
4 2.83 1.1446 180 300
5 3 1.017 177 310
6 3.5 0.7334 169 320
7 45 0.4122 156 330
8 5 0.319 150 340
9 55 0.2513 146 350
10 6 0.201 142 0

11 7 0.1339 136 10

12 8 0.0932 131 20

13 9 0.0673 126 30

14 9 Negative 0.0673 234 | 40

frequencies
15 8 0.0932 229 | 50
16 7 0.1339 224 60

163
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0.201 218 70
0.2513 214 80

0.319 210 90
0.4122 204 0
0.7334 191 343

1.017 183 326
1.1446 180 309
1.4568 173 292
2.1741 162 276
3.4332 147 259

17 R
18 55
19 5
20 45
21 35
22 3
23 2.83
24 25
25 R
26 15

Here, Z=N+P=2.

Hence, the above system is unstable.

Again,

Phase crossover frequency 2.83 rad/s
The gain at which the system becomes marginally stable, K* =55/1.1446 = 48

Gain margin

M =-20log|G(jo,)H (jo,)|
=—20log|1.1446| = -1.17dB

Gain crossover frequency =3 rad/s and the corresponding angle of GH=177"
Phase margin:l77—180:-30
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Nyquist plot using MATLAB

C
Program 1:Sketch the nyquist plot for the open loop transfer function REE; = s(s +f)(zs +4) .

Solution:

>> num=[040]

num=

0 40

>> q1=[10];

>> q2=[1 1];
>>q3=[14];

>> den=conv(ql,q2);
>> den=conv(den,q3);
den=

1 9 24 16 0
>>sys=tf(num,den)
Transfer function:

sM+9s"3+245"2+16s
>>nyquist(sys)



