Organic Chemistry

(Unit -3)

Hydrocarbon: Hydrocarbons are compounds of carbon and hydrogen.

Classification:

ALIPHATIC HYDROCARBON:

The open chain hydrocarbons are called aliphatic hydrocarbon. It is of two types-

- a) Saturated hydrocarbon
- b) Unsaturated hydrocarbon

Q) Difference between saturated and unsaturated hydrocarbon.

SATURATED HYDRO CARBON	UNSATURATED HYDRO CARBON	
The hydro carbon having carbon-carbon single bond in the chain.	The hydro carbon having carbon-carbon double/triple bond in the chain.	
Eg: Alkane(CH ₄ , C ₂ H ₆ etc)	Eg: Alkene(C ₂ H ₄ etc) and Alkyne(C ₂ H ₂ etc)	

1

ALICYCLIC HYDROCARBON:

The cyclic or ring compound having carbon atom at each corner of ring is called alicyclic hydrocarbon. It is of two types-

a) Saturated alicyclic hydrocarbon

Cyclobutene

Cyclopropene

Q) Define aromatic hydrocarbon. Justify that benzene is an aromatic hydrocarbon.

A: The cyclic hydrocarbon compound which obey Huckel rule that means it contain

 $(4n + 2)\pi$ electron. When n=0,1,2...... (n=no. of rings)

Benzene is having 1 ring that means n=1, hence

 $(4n + 2)\pi = (4X1+2)\pi = 6\pi$ Electron

According to Huckel rule benzene is having 6π electron. Hence it is

Benzene is having alternate double bond. Three double bond implies 6π electron in benzene. Hence benzene is an aromatic hydrocarbon which Huckel rule.

IUPAC Nomenclature :

Alkanes having suffix -ane with general formula C_nH_{2n+2} .

C ₁ methane	CH_4	C ₆	Hexane	C_6H_{14}
C ₂ Ethane	C_2H_6	C ₇	Heptane	C_7H_{16}
C ₃ Propane	C_3H_8	C ₈	Octane	C_8H_{18}
C ₄ Butane	C_4H_{10}	C ₉	Nonane	C_9H_{20}
C₅ Pentane	C_5H_{12}	C ₁₀	Decane	$C_{10}H_{22}$

The radical of alkane is called alkyl-- , With formula CnH_{2n+1} – represented as R – and suffix –yl.

 $Ex - CH_3 - methyl, C_2H_5 - Ethyl$

Rules of Nomenclature of alkane:

<a>Longest Chain Rule:-

Count the chain in such a manner that it contains large no. of carbon atom in the chain.

Ex.

3- Ethyl hexane.

Not 3- Propyl Pentane.

Naming the different substituents of equivalent positions:-

If two different substituents are present at equivalent positions from the two ends of the parent chain, then the numbering of the chain is done in such a way that the substituents which comes first in the alphabetical order gets the lower number.ex:-

3- Ethyl – 4-methyl hexane

2-Ethyl-5-mehtyl hexane

<c>Rule for branched substituent in the chain(lowest sum rule) :-

If the chain contains more than one branch then count the chain in such a direction that sum of their position will be lowest one.

Ex:-2, 2, 4 – Trimethyl pentane.

Alkene :

Alkene with general formula C_nH_{2n} and suffix – ene, n = no. of carbon atom and 2,3,4.....'n' can't be one.

 $n=2,C_2H_4 = Ethene$

n=3, C_3H_6 = Propene

n=4, C_4H_8 = Butene

Rule -1: The chain contains = bond and branch. '=' bond is prefer to branch.

Ex:- 1 2 3 4
4 3 2 1
$$CH_3 - CH - CH = CH_2$$

 $|$
 CH_3

3-Methyl bute-1-ene

Rule - 2 :

Chain containing more than one '=' bond is termed as diene, triene for 2, 3 = bonds. The position of the '=' bond follows lowest, sum rule.

1 2 3 4 5 5 4 3 2 1 $CH_2 = CH - CH = CH - CH_3$ Penta-1,3-diene

Alkyne:

Rule – 1:

General formula CnH_2n-2 and suffix -yne, where n = 2,3,4,5 etc.

lf	n =2	Ethyne
	n =3	Propyne
	n =4	Butyne

Rule – 2 : Chain containing double & triple bond

Lowest sum Rule:

a) Sum of the position of the double and triple bond must be lowest.

Naming first 'en' then 'yne' is written. eg -

1	2	3	4	5
5	4	3	2	1
CH ₂ =	= CH —	C≡	С —	CH₃
Pent-1-en-3-yne				

b) In case of identical sum double bond is preferred to triple bond

 1
 2
 3
 4
 5

 5
 4
 3
 2
 1

 CH
 \equiv C-- CH₂-- CH =
 CH₂

Pent-1-en-4-yne

Alkyl Halide:

Halogen is treated as a prefix and the prefixes are to be arranged alphabetically obeying lowest sum rule.

Ex :- 2-Chloro-4-methyl Pentane

Practice:-

(i)
$$C_2H_5 C_2H_5$$

 $C_2H_5 C_2H_5$
 $C_1 C_1 C_1 C_1$

2-Ethyl – 3 -Methyl pentane.

(ii) (CH₃)₃CC₂H₅

2,2- Dimethyl butane.

(iii)
$$CH_3 - CH - CH_2 - C - CH_3$$

 $| \\ CH_3 - CH - CH_2 - C - CH_3$
 $| \\ CH_3 - CH_3$

2,2,4 – Trimethyl pentne.

(iv)
$$HC \equiv C - CH_2 - CH = CH_2$$

Pent - 1 - en - 4 - yne

(v)
$$CH_{3}$$
$$|$$
$$CH_{2}=CH-CH-C = CH_{2}$$
$$|$$
$$CH_{2}-CH_{3}$$

3- Ethyl – 2- Methyl penta – 1,4-dine

ALCOHOL (ROH):

It is having suffix- 'ol'.

GENERAL NAME	GENERAL FORMULA	EXAMPLE
Alkanol	$C_nH_{2n+1}OH/C_nH_{2n+2}O$	If n=1, CH ₃ -OH(methanol)
		n=2, CH ₃ -CH ₂ -OH(ethanol)
		n=3,CH ₃ -CH ₂ -CH ₂ -OH
		(propan-1-ol)
Alkenol	$C_nH_{2n}O$	If n=2, CH ₂ =CH-OH(ethenol)
		n=3, CH ₂ =CH-CH ₂ -OH
		(prop-2-en-1-ol)
		CH ₂ =CH-CH ₃ (prop-1-en-2-ol) OH
Alkyno	C _n H _{2n-2} o	If n=2, HC ≡C-OH(ethynol)
		$n=3, CH \equiv C_2-CH_2-OH$
		(prop-2-yn-1-ol)

Uses of hydrocarbon in daily life:

BENZENE is used-

- in dry cleaning.
- as a motor fuel when mixed with petrol.
- as a solvent.
- as an insecticide (as gammaxene is prepared from it).
- as a starting material for the preparation of dyes, drugs, plastics, insecticides.

Toluene is used-

- as a substitute of petrol.
- in the manufacture of certain dyes and drugs
- an industrial solvent and in dry cleaning.

Phenol is used-

- as an antiseptic in soaps, lotions and ointments.
- as a preservative for ink.
- in the preparation of fungicides & bactericides.

Naphthalene is used-

- for manufacture of dyes, explosives and synthetic resins.
- for commercial production of phthalic anhydride, α -naphthol, β -naphthol
- for increasing the illuminating power of coal gas.

Anthracene is used-

- for manufacture of anthraquinone
- for making (alizarine)
- in smoke screens.

Benzoic acid is used-

- in the treatment of skin diseases like eczema
- as medicine especially as urinary antiseptic in the form of its salt.
- in the preparation of aniline blue