

LECTURE NOTES

ON

ENGG. MATH -I
PART-1
Prepared by

Dr. Pravakar Jena

(Asst. Prof.)

Department of Basic Sciences and Humanities, KIIT Polytechnic BBSR

CONTENTS

S.No	Chapter Name	Page No
1	Determinant	3-14
2	Matrix	15-23

Engg. Math-I 2 Dr. Pravakar Jena

CHAPTER -1

DETERMINANTS

Determinant will be used for solving the system of linear equations.

like
$$2x + y = 0$$
 and $x - y = 3$

Determinant of order 2

A determinant of order 2 can be written in the form of
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
which is defined as
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$OR \qquad \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1b_2 - b_1a_2$$

Note:

1.A determinant of order 2 contains two rows and two columns.

 $2.a_{11}, a_{12}$ are the elements of R_1 and a_{21}, a_{22} are the elements of R_2 .

 $3.a_{11}, a_{21}$ are the elements of C_1 and a_{12}, a_{22} are the elements of C_2 .

 $3.a_{11}, a_{22}$ are the elements of principal diagonal and a_{12}, a_{21} are the elements of sec ondary diagonal.

4. It contains $2 \times 2 = 4$ elements.

Determinant of order 3

A determinant of order 3 can be written in the form of $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$

Which is defined as
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Note:

1.A determinant of order 3 can be expanded by using 6 ways (any one row or any one column).

2. A determinant of order 3 can be expanded by using the respective sign of the element in different

3. The sign of all the elements in a 2nd order determinant is $\begin{vmatrix} + & - \\ - & + \end{vmatrix}$

General element

If an element occurring in the ith row and jth column of a determinant then it is called (i, j)th element. It is denoted by a_{ii} . $(i \rightarrow i$ th row, $j \rightarrow j$ th column)

Ex: Construct a determinant of order 3×3 by using general element a_{ii}

$$Let A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

Minor of an element a;

The minor of an element a_{ij} is defined as the value of a determinant will be obtained after deleting all the elements in the ith row and jth column. It is denoted by M_{ij} .

Cofactor of an element a;;

The cofactor of an element a_{ij} is denoted by C_{ij} , which is defined as $C_{ij} = (-1)^{i+j} M_{ij}$.

Ex: Find the Minor and Cofactor of a_{11} , a_{12} and a_{13} in $A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$

Ans: Minor of
$$a_{11} = M_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

Minor of
$$a_{12} = M_{12} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$

Minor of
$$a_{13} = M_{13} = \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

cofactor of
$$a_{11} = C_{11} = (-1)^{1+1} M_{11} = M_{11}$$

cofactor of
$$a_{12} = C_{12} = (-1)^{1+2} M_{12} = -M_{12}$$

cofactor of
$$a_{13} = C_{13} = (-1)^{1+3} M_{13} = M_{13}$$

Similarly find the minor and cofactor of other elements.

Properties of determinants

P-2: If any two adjacent rows or columns of a determinant are interchanged then the numerical value is same but the sign is changed.

$$Ex: A = \begin{vmatrix} 2 & 3 & -2 \\ 1 & 2 & 3 \\ -2 & 1 & -3 \end{vmatrix} = -37$$

$$Let B = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & -2 \\ -2 & 1 & -3 \end{vmatrix} = 37$$

P-3: If any two rows or columns a determinant identical or same then the value of the determinant vanishes or zero.

$$Ex: A = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ -2 & 1 & -3 \end{vmatrix} = 0$$

Note: If all the elements of a row or column of a determinant are zero then the value of the determinant is zero.

$$Ex:A = \begin{vmatrix} 0 & 0 & 0 \\ 1 & 2 & 3 \\ -2 & 1 & -3 \end{vmatrix} = 0$$

Note: If two rows or columns of a determinant are proportional then the value of the determinant is zero

$$Ex: A = \begin{vmatrix} -4 & 2 & -6 \\ 1 & 2 & 3 \\ -2 & 1 & -3 \end{vmatrix} = 0$$

P-4: If each element of a row or column of a determinant be multiplied by a constant k then the determinant is also multiplied by the same constant k.

$$Ex: A = \begin{vmatrix} 2 & 3 & -2 \\ 1 & 2 & 3 \\ -2 & 1 & -3 \end{vmatrix} = -37$$

$$Let B = \begin{vmatrix} 2k & 3k & -2k \\ 1 & 2 & 3 \\ -2 & 1 & -3 \end{vmatrix} = -37k = k(A)$$

P-5: If each element of a row or column of a determinant be the sum or difference of two or more terms then the determinant can be expressed as the sum or difference of two or more determinant.

$$Ex: A = \begin{vmatrix} a_1 + \alpha_1 & a_2 + \alpha_2 & a_3 + \alpha_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} + \begin{vmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

P-6: If each element of a row or column of a determinant be increased or decreased by a constant multiple of the corresponding elements of another row or column then the value of the determinant remains unchanged.

$$Ex: A = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$B = \begin{vmatrix} a_1 + kc_1 & a_2 + kc_2 & a_3 + kc_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} + \begin{vmatrix} kc_1 & kc_2 & kc_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = A + k \begin{vmatrix} c_1 & c_2 & c_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = A + 0 = A$$

Note: If
$$A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
 then $|A| = a_{11}c_{11} + a_{12}c_{12} + a_{13}c_{13}$ (using row) or $|A| = a_{11}c_{11} + a_{21}c_{21} + a_{31}c_{31}$ (using column)

Note: If
$$A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
 then $a_{11}c_{21} + a_{12}c_{22} + a_{13}c_{23} = 0$

Method for evaluating a determinant

We should always try to make maximum number of possible zeros in any one row or column.

It is possible by using

- (1) properties of determinant.
- (2) Row to Row addition or subtraction.
- (3) column to column addition or subtraction.
- (4) Any other method

Cramer's Rule:

Solution for two unknowns: The solution of two variables x and y of two linear equations $a_1x + b_1y = c_1$ and $a_2x + b_2y = c_2$ then $x = \frac{D_1}{D}$ and $y = \frac{D_2}{D}$.

Solution for three unknowns: The solution of two variables x and y of two linear equations $a_1x + b_1y + c_1z = d_1$, $a_2x + b_2y + c_2z = d_2$ and $a_3x + b_3y + c_3z = d_3$ then $x = \frac{D_1}{D}$, $y = \frac{D_2}{D}$ and $z = \frac{D_3}{D}$.

Consistent: A system of linear equation is said to be consistent if it gives a solution.

$$Ex:2x + 3y = -1 \text{ and } x - 3y = 2$$

Inconsistent: A system of linear equation is said to be inconsistent if it gives no solution.

$$Ex:2x + 3y = -1$$
 and $4x + 6y = 2$

Rules for consistency and inconsistency:(For Three unknowns)

We have
$$x = \frac{D_1}{D}$$
, $y = \frac{D_2}{D}$ and $z = \frac{D_3}{D}$.

1. If $D \neq 0$ then the system of equations are consistent and gives unique solution.

2. If D = 0, $D_1 = 0$, $D_2 = 0$ and $D_3 = 0$ then the system of equations are consistent and gives Infinite number of solutions.

3. If D=0, and at least one of D_1 , D_2 and D_3 is nonzero then the system of equations are inconsistent and gives no solutions.

Note: Same rule we can apply for two unknowns

Ex: Evaluate
$$\begin{vmatrix} sin\theta & cos\theta \\ -cos\theta & sin\theta \end{vmatrix}$$

Ex: Evaluate (a)
$$\begin{vmatrix} 2 & 33 \\ 4 & -25 \end{vmatrix}$$
, (b) $\begin{vmatrix} 1 & w \\ w^2 & 1 \end{vmatrix}$, (c) $\begin{vmatrix} sec\theta & tan\theta \\ tan\theta & sec\theta \end{vmatrix}$, (d) $\begin{vmatrix} \omega^6 & \omega^4 \\ -\omega^6 & \omega^5 \end{vmatrix}$, $\omega^3 = 1$

Ex: Find the maximum value of
$$\begin{vmatrix} 1 + \sin\theta & \cos\theta \\ -\cos\theta & \sin\theta \end{vmatrix}$$

Ex: Solve
$$\begin{vmatrix} x & 3 \\ 3 & x \end{vmatrix} = 0$$

Ans:
$$\begin{vmatrix} x & 3 \\ 3 & x \end{vmatrix} = 0$$

$$\Rightarrow x^2 - 9 = 0 \Rightarrow x^2 = 9 \Rightarrow x = \pm 3$$

Ex: Solve
$$\begin{vmatrix} x+1 & -2 \\ 1 & 3 \end{vmatrix} = 3$$

Ex: Evaluate (a)
$$\begin{vmatrix} 2 & -1 & 3 \\ 1 & 0 & 0 \\ -2 & 4 & 2 \end{vmatrix}$$
 (b) $\begin{vmatrix} 1 & 0 & 0 \\ 2 & 3 & 5 \\ 4 & 1 & 3 \end{vmatrix}$, (c) $\begin{vmatrix} -6 & 0 & 0 \\ 3 & -5 & 7 \\ 2 & 8 & 11 \end{vmatrix}$.

Ex: Prove that
$$\begin{vmatrix} \omega^2 & 1 & \omega \\ 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \end{vmatrix} = 0$$

$$\begin{vmatrix} \omega^{2} & 1 & \omega \\ 1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \end{vmatrix}$$

$$R_{1} \rightarrow R_{1} + R_{2} + R_{3}$$

$$= \begin{vmatrix} 1 + \omega + \omega^{2} & 1 + \omega + \omega^{2} & 1 + \omega + \omega^{2} \\ 1 & \omega & \omega^{2} & 1 \end{vmatrix}$$

$$After adding the elements of R_{1}, R_{2}, R_{3} then replace R_{1})
$$= \begin{vmatrix} 0 & 0 & 0 \\ 1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \end{vmatrix} (\because 1 + \omega + \omega^{2} = 0, you know in complex number)$$

$$= 0$$$$

Ex: Prove that
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$

Ans:

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$$

$$C_2 \to C_2 - C_1, C_3 \to C_3 - C_1$$

$$= \begin{vmatrix} 1 & 0 & 0 \\ a & b - a & c - a \\ a^2 & b^2 - a^2 & c^2 - a^2 \end{vmatrix} = 1 \begin{vmatrix} b - a & c - a \\ b^2 - a^2 & c^2 - a^2 \end{vmatrix} - 0 + 0$$

$$= (b - a)(c^2 - a^2) - (c - a)(b^2 - a^2) = (b - a)(c - a)(c + a) - (c - a)(b - a)(b + a)$$

$$= (b - a)(c - a)\{(c + a) - (b + a)\} = (b - a)(c - a)(c - b) = (a - b)(b - c)(c - a)$$
(Taking common -sign from (b-a) and (c-b) then you will get the answer)

Ex: Prove that
$$\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ bc & ca & ab \end{vmatrix} = (a-b)(b-c)(c-a)(ab+bc+ca)$$

$$\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ bc & ca & ab \end{vmatrix}$$

Multiply a in C_1 , b in C_2 , c in C_3 and divide abc

$$\begin{aligned}
&= \frac{1}{abc} \begin{vmatrix} a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \\ abc & cba & abc \end{vmatrix} taking common abc from C_3 \\
&= \frac{abc}{abc} \begin{vmatrix} a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \\ 1 & 0 & 0 \end{vmatrix} = 1 \begin{vmatrix} b^2 - a^2 & c^2 - a^2 \\ b^3 - a^3 & c^3 - a^3 \end{vmatrix} - 0 + 0 \text{ (expand it by using row 3)} \\
&= (b^2 - a^2)(c^3 - a^3) - (c^2 - a^2)(b^3 - a^3) \\
&= (b - a)(b + a)(c - a)(c^2 + ca + a^2) - (c - a)(c + a)(b - a)(b^2 + ab + a^2) \\
&= (b - a)(c - a)\{(b + a)(c^2 + ca + a^2) - (c + a)(b^2 + ab + a^2)\} \\
&= (b - a)(c - a)(bc^2 + abc + a^2b + ac^2 + a^2c + a^3 - cb^2 - abc - ca^2 - ab^2 - a^2b - a^3) \\
&= (b - a)(c - a)(bc^2 + ac^2 - cb^2 - ab^2) = (b - a)(c - a)\{bc(c - b) + a(c^2 - b^2)\} \\
&= (b - a)(c - a)(c - b)(bc + ac + ab) = (a - b)(c - a)(b - c)(bc + ac + ab)
\end{aligned}$$

Ex: solve
$$\begin{vmatrix} x+1 & 1 & 1 \\ 1 & x+1 & 1 \\ 1 & 1 & x+1 \end{vmatrix} = 0$$

$$\begin{vmatrix} x+1 & 1 & 1 \\ 1 & x+1 & 1 \\ 1 & 1 & x+1 \end{vmatrix} = 0$$

$$R_1 \to R_1 + R_2 + R_3$$

$$\Rightarrow \begin{vmatrix} x+3 & x+3 & x+3 \\ 1 & x+1 & 1 \\ 1 & 1 & x+1 \end{vmatrix} = 0$$

Taking common x+3 from row $1(R_1)$

$$\Rightarrow (x+3) \begin{vmatrix} 1 & 1 & 1 \\ 1 & x+1 & 1 \\ 1 & 1 & x+1 \end{vmatrix} = 0$$
either $x+3=0$ or $\begin{vmatrix} 1 & 1 & 1 \\ 1 & x+1 & 1 \\ 1 & 1 & x+1 \end{vmatrix} = 0$

since
$$x + 3 = 0 \Rightarrow x = -3$$

$$Again\begin{vmatrix} 1 & 1 & 1 \\ 1 & x+1 & 1 \\ 1 & 1 & x+1 \end{vmatrix} = 0$$

$$C_2 \to C_2 - C_1, C_3 \to C_3 - C_1$$

$$\Rightarrow \begin{vmatrix} 1 & 0 & 0 \\ 1 & x & 0 \\ 1 & 0 & x \end{vmatrix} = 0 \Rightarrow 1 \begin{vmatrix} x & 0 \\ 0 & x \end{vmatrix} - 0 + 0 = 0 \Rightarrow x^2 = 0 \Rightarrow x = 0$$

Hence
$$x = 0$$
 and $x = -3$

Ex: Solve by Cramer's rule 2x + 3y = -1 and x - 2y = 3

Ans: Given equations are 2x + 3y = -1 and x - 2y = 3

Here
$$a_1 = 2$$
, $b_1 = 3$, $c_1 = -1$, $a_2 = 1$, $b_2 = -2$, $c_2 = 3$

Let
$$D = \begin{vmatrix} 2 & 3 \\ 1 & -2 \end{vmatrix} = -7$$

$$D_1 = \begin{vmatrix} -1 & 3 \\ 3 & -2 \end{vmatrix} = -7$$

$$D_2 = \begin{vmatrix} 2 & -1 \\ 1 & 3 \end{vmatrix} = 7$$

$$x = \frac{D_1}{D} = \frac{-7}{-7} = 1$$
 and $y = \frac{D_2}{D} = \frac{7}{-7} = -1$

Ex: Solve by cramer's rule 2x + y + 2z = 2.3x + 2y + z = 2 and -x + y + 3z = 6

Ans:

Let
$$D = \begin{vmatrix} 2 & 1 & 2 \\ 3 & 2 & 1 \\ -1 & 1 & 3 \end{vmatrix} = 2 \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} - 1 \begin{vmatrix} 3 & 1 \\ -1 & 3 \end{vmatrix} + 2 \begin{vmatrix} 3 & 2 \\ -1 & 1 \end{vmatrix} = 2(5) - 1(10) + 2(5) = 10$$

$$D_{1} = \begin{vmatrix} 2 & 1 & 2 \\ 2 & 2 & 1 \\ 6 & 1 & 3 \end{vmatrix} = 2 \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} - 1 \begin{vmatrix} 2 & 1 \\ 6 & 3 \end{vmatrix} + 2 \begin{vmatrix} 2 & 2 \\ 6 & 1 \end{vmatrix} = 2(5) - 1(0) + 2(-10) = -10$$

$$D_2 = \begin{vmatrix} 2 & 2 & 2 \\ 3 & 2 & 1 \\ -1 & 6 & 3 \end{vmatrix} = 2 \begin{vmatrix} 2 & 1 \\ 6 & 3 \end{vmatrix} - 2 \begin{vmatrix} 3 & 1 \\ -1 & 3 \end{vmatrix} + 2 \begin{vmatrix} 3 & 2 \\ -1 & 6 \end{vmatrix} = 2(0) - 2(10) + 2(20) = 20$$

$$D_3 = \begin{vmatrix} 2 & 1 & 2 \\ 3 & 2 & 2 \\ -1 & 1 & 6 \end{vmatrix} = 2 \begin{vmatrix} 2 & 2 \\ 1 & 6 \end{vmatrix} - 1 \begin{vmatrix} 3 & 2 \\ -1 & 6 \end{vmatrix} + 2 \begin{vmatrix} 3 & 2 \\ -1 & 1 \end{vmatrix} = 2(10) - 1(20) + 2(5) = 10$$

$$x = \frac{D_1}{D} = \frac{-10}{10} = -1, y = x = \frac{D_2}{D} = \frac{20}{10} = 2, z = x = \frac{D_3}{D} = \frac{10}{10} = 1$$

Questions carrying 2 marks

1. Find the value of
$$\begin{bmatrix} 5 & -2 & 1 \\ 3 & 0 & 2 \\ 8 & 1 & 3 \end{bmatrix}$$

Ans:7

2. Find the value of
$$\begin{vmatrix} sec\theta & tan\theta \\ tan\theta & sec\theta \end{vmatrix}$$

Ans: 1

3. If
$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ x & 0 & 0 \end{vmatrix}$$
, then find the value of x

Ans : x = -1

4. Find the minimum value of
$$\begin{vmatrix} sinx & cosx \\ -cosx & 1 + sinx \end{vmatrix}$$
 where $x \in R$

5. Find the maximum value of
$$\begin{vmatrix} sin^2x & sinx.cosx \\ -cosx & sinx \end{vmatrix}$$
 where $x \in R$

Ans: 1

6. If
$$\omega$$
 is the cube root of unity, find the value of the determinan t
$$\begin{vmatrix} 1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w \end{vmatrix}$$

Ans: 0

7. Find the value of the determinant
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Ans: 0

8. If
$$\begin{vmatrix} a & b & c \\ b & a & b \\ x & b & c \end{vmatrix} = 0$$
, then find x

Ans: x=a

9. Solve
$$\begin{vmatrix} 4 & x+1 \\ 3 & x \end{vmatrix} = 5$$

Ans: x=8

10. Solve
$$\begin{vmatrix} 2 & -3 \\ 4 & 3 \end{vmatrix} = \begin{vmatrix} x & 1 \\ -2 & x \end{vmatrix}$$

Ans: ± 4

Questions carrying 5 marks

1. Solve
$$\begin{vmatrix} 1+x & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+x \end{vmatrix} = 0$$

Ans: x=0 or x=-3

2. Solve
$$\begin{vmatrix} x+a & b & c \\ b & x+c & a \\ c & a & x+c \end{vmatrix} = 0$$

Ans:
$$x = -(a+b+c)$$
 or $\sqrt{a^2 + b^2 + c^2 - ab - bc - ca}$

3. Solve
$$\begin{vmatrix} x & a & a \\ m & m & m \\ h & x & h \end{vmatrix} = 0$$

Ans: x = a or x = b

4. Solve
$$\begin{vmatrix} x+1 & w & w^2 \\ w & x+w^2 & 1 \\ w^2 & 1 & x+w \end{vmatrix} = 0$$
 where ω is cube root of unity.

Ans: x=0

5. Prove without expanding that
$$\begin{vmatrix} bc & a & a^2 \\ ca & b & b^2 \\ ab & c & c^2 \end{vmatrix} = \begin{vmatrix} 1 & a^2 & a^3 \\ 1 & b^2 & b^3 \\ 1 & c^2 & c^3 \end{vmatrix}$$

6. Prove that
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$

6. Prove that
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$
7. Prove that
$$\begin{vmatrix} 1 & 1 & 1 \\ x^2 & y^2 & z^2 \\ x^3 & y^3 & z^3 \end{vmatrix} = (x-y)(y-z)(z-x)(xy+yz+zx)$$
8. Prove that
$$\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^3 & y^3 & z^3 \end{vmatrix} = xyz(x-y)(y-z)(z-x)$$

8. Prove that
$$\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^3 & y^3 & z^3 \end{vmatrix} = xyz(x-y)(y-z)(z-x)$$

9. Prove that
$$\begin{vmatrix} x+a & b & c \\ a & x+b & c \\ a & b & x+c \end{vmatrix} = x^2(x+a+b+c)$$

10. Prove that
$$\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$$

9. Prove that
$$\begin{vmatrix} x+a & b & c \\ a & x+b & c \\ a & b & x+c \end{vmatrix} = x^{2}(x+a+b+c)$$
10. Prove that
$$\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = abc\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$$
11. Prove that
$$\begin{vmatrix} 1 & 1 & 1 \\ b+c & c+a & a+b \\ b^{2}+c^{2} & c^{2}+a^{2} & a^{2}+b^{2} \end{vmatrix} = (b-c)(c-a)(a-b)$$

12. Prove that
$$\begin{vmatrix} a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b \end{vmatrix} = (a + b + c)^3$$

13. Solve by Cramer's rule:

(i)
$$4x - y = 9,5x + 2y = 8$$

Ans:
$$x = 2$$
, $y = -1$

(ii)
$$2x - y = 2, 3x + y = 13$$

Ans:
$$x = 3$$
, $y = 4$

(iii)
$$x-y+z=1, 2x+3y-5z=7, 3x-4y-2z=-1$$

Ans:
$$x = \frac{35}{16}$$
, $y = \frac{53}{32}$, $z = \frac{15}{32}$

(iv)
$$x+y+z=3,2x+3y+4z=9,x+2y-4z=-1$$

Ans:
$$x = 1$$
, $y = 1$, $z = 1$

CHAPTER-2

MATRICES

A rectangular array of mn numbers with m horizontal lines (rows) and n vertical lines (columns) is known as a matrix of order $m \times n$.

Ex:
$$A = \begin{bmatrix} 2 & 3 \\ a & b \\ -1 & 3 \end{bmatrix}$$
 it is a matrix of order 3×2 and contains 6 elements. i.e $3 \times 2 = 6$

General element of a matrix: If an element occurs in the ith row and jth column of a matrix then it is called (i,j)th element of the matrix. It is denoted by a_{ij} .

A matrix of order m imes n , generally written as $A = \left[a_{ij}\right]_{m imes n}$

Let us consider a matrix of order 2×3 by general element.

$$\mathsf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

Ex: construct a matrix of order 3×4 , whose elements are in the form of $a_{ij} = 2i - j$.

Types of a matrices:

Row matrix: A matrix having only one row is known as row matrix or Row vector.

$$A = [2 \ 3 \ -1]$$

Column matrix: A matrix having only one column is known as column matrix.

$$A = \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}$$

Zero matrix or Null matrix: If all the elements of a matrix are zero then it is called null matrix.

Ex:
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Square matrix: If the number of rows and columns of a matrix are equal then it is called square matrix.i.e m=n

Ex: A =
$$\begin{bmatrix} 2 & -1 \\ 9 & 3 \end{bmatrix}$$

Rectangular matrix: If the number of rows and columns of a matrix are not equal then it is called rectangular matrix. i.e $m \neq n$.

$$Ex:A = \begin{bmatrix} -1 & 2 & 4 \\ 2 & 3 & -9 \end{bmatrix}$$

Diagonal elements: The elements a_{ij} , i=j in a square matrix A are called diagonal elements.

Ex:
$$A = \begin{bmatrix} 2 & 3 & 0 \\ -2 & -3 & 1 \\ 4 & -6 & 4 \end{bmatrix}$$
 here 2, -3 and 4 are diagonal elements.

Diagonal matrix: A square matrix A is said to be a diagonal matrix if all the diagonal elements are present but non diagonal elements are zero, i.e $a_{ij} = 0$, for all $i \neq j$.

Ex: A =
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

Scalar matrix: A square matrix A is said to be a scalar matrix if all the diagonal elements are equal but non diagonal elements are zero.

Ex: A =
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Unit matrix or Identity matrix: A square matrix is said to be an identity matrix if all the diagonal elements are unity(1) but non diagonal elements are zero. It is denoted by I_n or I.

i.e $a_{ij} = 0$, for all $i \neq j$ and $a_{ij} = 1$, for all i = j.

Ex:
$$I_3$$
 or $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Ex:
$$I_2$$
 or $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Upper triangular matrix: A square matrix is said to be an upper triangular matrix if all the elements below the main diagonal are zero. i.e $a_{ij} = 0$, for all i > j.

Ex:
$$A = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 7 \\ 0 & 0 & -2 \end{bmatrix}$$

Lower triangular matrix: A square matrix is said to be a lower triangular matrix if all the elements above the main diagonal are zero. $i.e \ a_{ij} = 0$, $for \ all \ i < j$

Ex: A =
$$\begin{bmatrix} 2 & 0 & 0 \\ 3 & 1 & 0 \\ -1 & 4 & -2 \end{bmatrix}$$

Singular matrix: A square matrix A is said to be a singular matrix if det.A=0 or |A| = 0.

Ex:
$$let A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$$

$$|A| = \begin{vmatrix} 1 & 2 \\ 3 & 6 \end{vmatrix} = 0$$
 hence A is a singular matrix.

Non singular matrix: A square matrix A is said to be a nonsingular matrix if or $\det A \neq 0$ or $|A| \neq 0$.

Ex:
$$|\text{let A} = \begin{bmatrix} 1 & 2 \\ 5 & 6 \end{bmatrix}$$

$$|A| = \begin{vmatrix} 1 & 2 \\ 5 & 6 \end{vmatrix} = 6 - 10 = -4$$
 hence A is a nonsingular matrix.

Comparable Matrix: Two matrices A and B are said to be comparable if they have same order.

Ex:
$$A = \begin{bmatrix} 2 & -3 & 1 \\ 1 & 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$ here A and B are comparable.

Equal Matrix: Two matrices A and B are said to be equal (i.e A=B) if they have same order and their corresponding elements are equal.

Let
$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ d_1 & e_1 & f_1 \end{bmatrix}$$
 and $B = \begin{bmatrix} a_2 & b_2 & c_2 \\ d_2 & e_2 & f_2 \end{bmatrix}$ So A = B iff $a_1 = a_2, b_1 = b_2, c_1 = c_2, d_1 = d_2, e_1 = e_2, f_1 = f_2$

Ex: Find the value of x and y if
$$\begin{bmatrix} 2x - y & -1 \\ 2 & x + y \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 2 & 6 \end{bmatrix}$$

Ans: Here 2x-y=3 and x+y=6 solve the above two equations x=3 and y=3.

Scalar multiplication of a matrix: If A be a matrix and k be a scalar then the scalar multiplication of a matrix kA will be obtained multiplying each element of A by k.i. $e A = [a_{ij}] \Rightarrow kA = [ka_{ij}]$

Ex: let
$$A = \begin{bmatrix} 1 & 2 \\ 5 & 6 \end{bmatrix} \Rightarrow 2A = \begin{bmatrix} 2 & 4 \\ 10 & 12 \end{bmatrix}$$

Matrix addition:

If A and B are two matrices of order $m \times n$ then addition A+B will be obtained by adding the corresponding elements of A and B. The order of A+B is $m \times n$.

Ex: Find A+B if
$$A = \begin{bmatrix} 2 & -1 & 3 \\ -3 & -2 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 5 & 4 & 3 \\ 3 & -6 & 1 \end{bmatrix}$

Ans:
$$A + B = \begin{bmatrix} 2 & -1 & 3 \\ -3 & -2 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 4 & 3 \\ 3 & -6 & 1 \end{bmatrix} = \begin{bmatrix} 2+5 & -1+4 & 3+3 \\ -3+3 & -2-6 & 4+1 \end{bmatrix} = \begin{bmatrix} 7 & 3 & 6 \\ 0 & -8 & 5 \end{bmatrix}$$

Similarly
$$A - B = \begin{bmatrix} 2 & -1 & 3 \\ -3 & -2 & 4 \end{bmatrix} - \begin{bmatrix} 5 & 4 & 3 \\ 3 & -6 & 1 \end{bmatrix} = \begin{bmatrix} 2 - 5 & -1 - 4 & 3 - 3 \\ -3 - 3 & -2 + 6 & 4 - 1 \end{bmatrix} = \begin{bmatrix} -3 & -5 & 0 \\ -6 & 4 & 3 \end{bmatrix}$$

Note:

1)
$$A + B = B + A$$

2)
$$A - B \neq B - A$$

3)
$$k(A + B) = kA + kB$$

$$4)(\alpha + \beta)A = \alpha A + \beta A$$

$$5)\alpha\beta A = \alpha(\beta A) = \beta(\alpha A)$$

6)
$$A+(B+C)=(A+B)+C$$

7)Existence of Additive Identity: A+O=O+A=A(Here O be a Null matrix)

8) Existence of Additive Inverse: A+(-A)=O=(-A)+A

9)Cancellation law: A+B=A+C \Rightarrow B = C(left cancellation law)

$$B + A = C + A \Rightarrow B = C(right\ cancellation\ law)$$

Transpose of a matrix:

If A be a matrix of order $m \times n$ then the transpose of the matrix will be obtained by interchanging the rows and columns. It is denoted by A^T and the order of A^T is $n \times m$.

Ex: let
$$A = \begin{bmatrix} 2 & -3 & 4 \\ 3 & 2 & 5 \end{bmatrix} A^T = \begin{bmatrix} 2 & 3 \\ -3 & 2 \\ 4 & 5 \end{bmatrix}$$

Properties:

1)
$$(A^T)^T = A$$

$$2)(A+B)^T = A^T + B^T$$

3)If A be a matrix and k is a scalar $(kA)^T = k A^T$

$$4)(AB)^T = B^T A^T$$

$$5) (ABC)^T = C^T B^T A^T$$

Symmetric Matrix: A square matrix A is said to be symmetric matrix if $A^T = A$, $i. e \ a_{ij} = a_{ji} \ for \ all \ i \ and \ j$

$$\mathsf{Ex:} = \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix} . A = \begin{bmatrix} a & -1 \\ -1 & a \end{bmatrix}$$

Skew-symmetric matrix: A square matrix A is said to be skew-symmetric matrix if $A^T = -A$, i. $e \ a_{ij} = -a_{ii} \ for \ all \ i \ and \ j$

$$\mathsf{Ex:} = \begin{bmatrix} 0 & h & -g \\ -h & 0 & f \\ g & -f & 0 \end{bmatrix}.$$

Properties:

1) $A + A^{T}$ is a symmetric matrix but $A - A^{T}$ is a skew – symmetric matrix.

2) AA^{T} and $A^{T}A$ are symmetric matrix

3) Every square matrix A can be expressed as the sum of symmetric and skew-symmetric matrix.

i.
$$eA = \frac{1}{2}(A + A^T) + \frac{1}{2}(A - A^T)$$
 Here $\frac{1}{2}(A + A^T)$ is a symmetric matrix and
$$\frac{1}{2}(A - A^T)$$
 is a skew – symmetric matrix

Note: If A and B are symmetric matrix and AB=BA then AB is a symmetric matrix.

Note:If A is a symmetric matrix then A^n is a symmetric matrix for all + ve integer.

Note: A matrix which is both symmetric as well as skew symmetric matrix is a null matrix.

Adjoint of a matrix:

Adjoint of a square matrix A is defined as the transpose of the cofactor matrix A.

It is denoted adj.A.

i. e adj.
$$A = (cofactor\ matrix\ of\ A)^T = \left[C_{ij}\right]^T$$
, Where C_{ij} is cofactor of a_{ij} in A

Note: If A be a square matrix of order n then A(adjA)= $|A|I_n$, I be an Identity matrix

Note: If A be a non–singular matrix of order n then $|adjA| = |A|^{n-1}$

Note: If A and B are non-singular square matrix of same order then adjAB=adjBadjA

Note: If A is a non-singular matrix then $adj(adjA) = |A|^{n-2}A$

Inverse of a matrix:

A non- singular square matrix A of order n is said to be invertible (i.e A^{-1} exists) if there exist a non singular square matrix B of order n, such that AB = BA = I, so $A^{-1} = B$ or $B^{-1} = A$.

Formula finding A^{-1} :

If A be non singular square matrix then A^{-1} is defined as $A^{-1} = \frac{adj.A}{|A|}$

Note: If A is invertible matrix then $(A^{-1})^{-1} = A$

Note: $(AB)^{-1} = B^{-1}A^{-1}$

Note: If A is invertible square matrix then A^T is invertible i.e $(A^T)^{-1} = (A^{-1})^T$

Note: If A is an invertible square matrix then $adjA^T = (adjA)^T$

Note: Adjoint of a symmetric matrix is also a symmetric matrix.

$$(adjA)^T = adjA$$

Note: If A is a non-singular matrix then $|A^{-1}| = |A|^{-1}$

Matrix Multiplication:

Existence of the product of two matrices: The product of two matrices A and B are said to be exist (*i.e AB exist*) if the number of columns in the matrix A is equal to the number of rows in the matrix B.

Product of matrices:

If $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$ and $B = \begin{bmatrix} b_{jk} \end{bmatrix}_{n \times p}$ then AB is a matrix of order $m \times p$, Which is defined as $AB = \begin{bmatrix} c_{ik} \end{bmatrix}_{m \times p}$, where $c_{ik} = a_{i1}b_{1k} + a_{i2}b_{2k} + - - - - - + a_{in}b_{nk} = \sum_{j=1}^{n} a_{ij}b_{jk}$

Thus (i,k)th element of AB = Sum of the product of the corresponding elements of AB = Sum of AB = Sum of BB = Sum of

Properties of product of two matrices:

- 1. Matrix multiplication is not commutative in general i. e $AB \neq BA$
- 2. Matrix multiplication is associative i. e A(BC) = (AB)C
- 3. Matrix multiplication is distributive over addition i. e A(B + C) = AB + AC

$$4.A.A = A^2$$

$$5.A.I = IA = A$$

$$6.I.I.I - - - - - I(ntimes) = I$$

Solution for system of linear equations: (Solve by matrix method)

Let us consider three linear equations

$$a_1x + b_1y + c_1z = d_1$$
, $a_2x + b_2y + c_2z = d_2$ and $a_3x + b_3y + c_3z = d_3$

$$\operatorname{Let} A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad B = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

Now the above equation can be written as $AX = B \Rightarrow X = A^{-1}B$

Which is known as matrix method.

Assignment-1

- 1. Write the order of the matrix (a) $\begin{pmatrix} 1 & 2 \\ -1 & -3 \\ 5 & 0 \end{pmatrix}$, $(b) \begin{pmatrix} a \\ b \\ x \end{pmatrix}$, $(c) \begin{pmatrix} 3 & 2 & -1 \\ 1 & 0 & 1 \end{pmatrix}$
- 2. Give an example of (a) $3 \times 4 \ matrix$ (b) $2 \times 1 \ matrix$
- 3. Write the number of elements of a matrix whose order is 4×3
- 4. Write the elements of a_{12} , a_{23} , a_{31} and a_{22} in the given matrix $\begin{pmatrix} 2 & -1 & 3 \\ 4 & 1 & 5 \\ 0 & -2 & -3 \end{pmatrix}$
- 5. Construct a matrix of order 2×3 , whose elements are in the form of

(a)
$$a_{ij} = 2i + j$$
 , $(b)a_{ij} = i - j$, $(c)a_{ij} = i \times j$, $(d)a_{ij} = \frac{i}{i}$, $(e)a_{ij} = 2i - 3j$

- 6. Give an example of a square matrix .
- 7. Give an example of an Identity matrix of order 4.
- 8. Write the diagonal elements of a matrix $\begin{pmatrix} 2 & -1 & 9 \\ -1 & 1 & -7 \\ 1 & -2 & -3 \end{pmatrix}$
- 9. Write the number of elements of a matrix whose order is p
- 10. Construct a matrix of order 3×2 , whose elements are in the form of $a_{ij} = 2i + j$

Assignment-2

- 1. Find the value of x and y if $\begin{pmatrix} x & 2y \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ -1 & 3 \end{pmatrix}$.
- 2. Find the value of x and y $\begin{pmatrix} 1 & 2 & 3 \\ 2x & -1 & x+y \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 5 \end{pmatrix}$
- 3. Find the value of x and y $\begin{pmatrix} x-y & 2 \\ 3 & 2x+y \end{pmatrix} = \begin{pmatrix} 4 & 2 \\ 3 & 0 \end{pmatrix}$
- 4. Find the value of x, y and z if $\begin{pmatrix} x+y & y-z \\ 5-t & 7+x \end{pmatrix} = \begin{pmatrix} t-x & z-t \\ z-y & x+z+t \end{pmatrix}$
- 5. Find A + B, B + A, A B and B A if $A = \begin{pmatrix} -1 & 2 \\ 3 & -4 \\ 5 & 6 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 3 \\ -2 & 4 \\ 1 & 2 \end{pmatrix}$
- 6. Find X if $X + \begin{pmatrix} 2 & 1 \\ -2 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ -1 & 4 \end{pmatrix}$
- 7. Find a matrix which when added to $\begin{pmatrix} 3 & -1 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} 4 & -3 \\ 2 & 1 \end{pmatrix}$
- 8. Find A + B + C if $A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & -2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 2 & -1 & 3 \\ 4 & 5 & -2 \end{pmatrix}$ and $C = \begin{pmatrix} 1 & 0 & 3 \\ 4 & 2 & 1 \end{pmatrix}$

9. Find the value of x and y if $\begin{pmatrix} x & y \\ -1 & 2 \end{pmatrix} + \begin{pmatrix} 2y & -x \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ 2 & 2 \end{pmatrix}$

10. Find the order of the matrix $(a \ b \ c)$

Assignment-3

1. Find the Transpose of a matrix
$$\begin{pmatrix} 1 & 2 \\ -1 & -3 \\ 4 & 5 \end{pmatrix}$$

2. Find the transpose and order of the matrix
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ -2 & -3 & -5 & -1 \\ 3 & 0 & -3 & 1 \end{pmatrix}$$

3.Find the minor and co-factor of a determinant
$$\begin{bmatrix} 2 & -1 \\ 1 & 4 \end{bmatrix}$$

4. Find the minor and co-factor of a determinant
$$\begin{vmatrix} 1 & 0 & -1 \\ 2 & 3 & 1 \\ -2 & 0 & 4 \end{vmatrix}$$

5. Find the adjoint of a matrix
$$\begin{pmatrix} 1 & 3 \\ -2 & 4 \end{pmatrix}$$

6. Find the adjoint of a matrix
$$A$$
, if $A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -1 & 2 \\ 1 & 3 & 2 \end{pmatrix}$

7. Find adjA if
$$A = \begin{pmatrix} 0 & 1 & 2 \\ 3 & -1 & 2 \\ 4 & -2 & 1 \end{pmatrix}$$

8. Find the cofactor of 2 in the determinant
$$\begin{bmatrix} -1 & 2 \\ 3 & 0 \end{bmatrix}$$

9. Find
$$2A - 3B$$
 if $A = \begin{pmatrix} 2 & 0 \\ 3 & -3 \\ 4 & -1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ -1 & -3 \\ 4 & 1 \end{pmatrix}$

10. Find $A - \alpha I$ if $A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$, Where I be an Identity matrix of order 2 and $\alpha \neq 0$ is a scalar.

Assignment-4

1. Find Inverse of a Matrix
$$\begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$$
.

2.Find
$$A^{-1}$$
 if $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

3. Find inverse of a matrix
$$\begin{pmatrix} 1 & 1 & 1 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{pmatrix}$$
.

4. Find
$$A^{-1}$$
 if $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}$.

5. Solve by Matrix Method

(a)
$$x + 2y = 3$$
 and $3x + y = 4$ (b) $x - 2y - 4 = 0$ and $-3x + 5y + 7 = 0$

6. Solve by Matrix Method

(a)
$$x + 2y - 3z = 4$$
, $2x + 4y - 5z = 12$ and $3x - y + z = 3$

(b)
$$x - 2y = 3$$
, $3x + 4y - z = -2$ and $5x - 3z = -1$

7.If A is a matrix of order 3×3 , and |A| = 2 then find $A \times adjA$, where I is an Identity matrix.

8. Find
$$AB$$
 if $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix}$

9. Find
$$AB$$
 if $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 \\ 2 & 0 \\ -1 & 1 \end{pmatrix}$

10. Find
$$AB \ if \ A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \end{pmatrix} \ and \ B = \begin{pmatrix} 2 & 3 & 0 \\ 1 & 2 & 3 \end{pmatrix}$$