A rectangular array of $m n$ numbers with m horizontal lines (rows) and n vertical lines (columns) is known as a matrix of order $m \times n$.
$\mathrm{Ex}: \mathrm{A}=\left[\begin{array}{cc}2 & 3 \\ a & b \\ -1 & 3\end{array}\right]$ it is a matrix of order 3×2 and contains 6 elements. i.e $3 \times 2=6$
General element of a matrix: If an element occurs in the ith row and jth column of a matrix then it is called (i, j)th element of the matrix.It is denoted by $a_{i j}$.

A matrix of order $m \times n$, generally written as $A=\left[a_{i j}\right]_{m \times n}$
Let us consider a matrix of order 2×3 by general element.
$\mathrm{A}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$
Ex: construct a matrix of order 3×4, whose elements are in the form of $a_{i j}=2 i-j$.
Types of a matrices:
Row matrix: A matrix having only one row is known as row matrix or Row vector.
$A=\left[\begin{array}{lll}2 & 3 & -1\end{array}\right]$
Column matrix: A matrix having only one column is known as column matrix.
$A=\left[\begin{array}{c}3 \\ 2 \\ -1\end{array}\right]$
Zero matrix or Null matrix: If all the elements of a matrix are zero then it is called null matrix.
Ex: $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
Square matrix: If the number of rows and columns of a matrix are equal then it is called square matrix.i.e $m=n$
$E x: A=\left[\begin{array}{cc}2 & -1 \\ 9 & 3\end{array}\right]$
Rectangular matrix: If the number of rows and columns of a matrix are not equal then it is called rectangular matrix. i.e $m \neq n$.
$E x: A=\left[\begin{array}{ccc}-1 & 2 & 4 \\ 2 & 3 & -9\end{array}\right]$

Diagonal elements: The elements $a_{i j}, i=j$ in a square elements A are called diagonal elements.

Ex: $A=\left[\begin{array}{ccc}2 & 3 & 0 \\ -2 & -3 & 1 \\ 4 & -6 & 4\end{array}\right]$ here $2,-3$ and 4 are diagonal elements.
Diagonal matrix: A square matrix A is said to be a diagonal matrix if all the diagonal elements are present but non diagonal elements are zero, i.e $a_{i j}=0$, for all $i \neq j$.
$\mathrm{Ex}: \mathrm{A}=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 4\end{array}\right]$
Scalar matrix: A square matrix A is said to be a scalar matrix if all the diagonal elements are equal but non diagonal elements are zero.
$\mathrm{Ex}: \mathrm{A}=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
Unit matrix or Identity matrix: A square matrix is said to be an identity matrix if all the diagonal elements are unity(1) but non diagonal elements are zero. It is denoted by I_{n} or I.
i.e $a_{i j}=0$, for all $i \neq j$ and $a_{i j}=1$, for all $i=j$.

Ex: I_{3} or $I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Ex: I_{2} or $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Upper triangular matrix: A square matrix is said to be an upper triangular matrix if all the elements below the main diagonal are zero. i.e $a_{i j}=0$, for all $i>j$.
$\mathrm{Ex}: \mathrm{A}=\left[\begin{array}{ccc}2 & -1 & 3 \\ 0 & 1 & 7 \\ 0 & 0 & -2\end{array}\right]$
Lower triangular matrix: A square matrix is said to be a lower triangular matrix if all the elements above the main diagonal are zero. i.e $a_{i j}=0$, for all $i<j$
$\mathrm{Ex}: \mathrm{A}=\left[\begin{array}{ccc}2 & 0 & 0 \\ 3 & 1 & 0 \\ -1 & 4 & -2\end{array}\right]$

Singular matrix: A square matrix A is said to be a singular matrix if det. $\mathrm{A}=0$ or $|A|=0$.

Ex:

$$
\begin{aligned}
& \text { let } A=\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right] \\
& |A|=\left|\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right|=0 \text { hence } A \text { is a singular matrix. }
\end{aligned}
$$

Non singular matrix: A square matrix A is said to be a nonsingular matrix if or $\operatorname{det} A \neq$ 0 or $|A| \neq 0$.

Ex:

$$
\begin{gathered}
\text { let } A=\left[\begin{array}{ll}
1 & 2 \\
5 & 6
\end{array}\right] \\
|A|=\left|\begin{array}{ll}
1 & 2 \\
5 & 6
\end{array}\right|=6-10=-4 \text { hence } A \text { is a nonsingular matrix. }
\end{gathered}
$$

Comparable Matrix: Two matrices A and B are said to be comparable if they have same order.
Ex: $A=\left[\begin{array}{ccc}2 & -3 & 1 \\ 1 & 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]$ here A and B are comparable.
Equal Matrix: Two matrices A and B are said to be equal (i.e $A=B$) if they have same order and their corresponding elements are equal.

Let $A=\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ d_{1} & e_{1} & f_{1}\end{array}\right]$ and $B=\left[\begin{array}{lll}a_{2} & b_{2} & c_{2} \\ d_{2} & e_{2} & f_{2}\end{array}\right]$ So $\mathrm{A}=\mathrm{B}$ iff $a_{1}=a_{2}, b_{1}=b_{2}, c_{1}=c_{2}, d_{1}=$ $d_{2}, e_{1}=e_{2}, f_{1}=f_{2}$

Ex: Find the value of x and y if $\left[\begin{array}{cc}2 x-y & -1 \\ 2 & x+y\end{array}\right]=\left[\begin{array}{cc}3 & -1 \\ 2 & 6\end{array}\right]$
Ans: Here $2 x-y=3$ and $x+y=6$ solve the above two equations $x=3$ and $y=3$.
Scalar multiplication of a matrix: If A be a matrix and k be a scalar then the scalar multiplication of a matrix kA will be obtained multiplying each element of A by k.i.e $A=\left[a_{i j}\right] \Rightarrow k A=\left[k a_{i j}\right]$

Ex: let $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 5 & 6\end{array}\right] \Rightarrow 2 A=\left[\begin{array}{cc}2 & 4 \\ 10 & 12\end{array}\right]$

Matrix addition:

If A and B are two matrices of order $m \times n$ then addition $\mathrm{A}+\mathrm{B}$ will be obtained by adding the corresponding elements of A and B. The order of $A+B$ is $m \times n$.

Ex: Find $A+B$ if $A=\left[\begin{array}{ccc}2 & -1 & 3 \\ -3 & -2 & 4\end{array}\right]$ and $B=\left[\begin{array}{ccc}5 & 4 & 3 \\ 3 & -6 & 1\end{array}\right]$

Ans: $A+B=\left[\begin{array}{ccc}2 & -1 & 3 \\ -3 & -2 & 4\end{array}\right]+\left[\begin{array}{ccc}5 & 4 & 3 \\ 3 & -6 & 1\end{array}\right]=\left[\begin{array}{ccc}2+5 & -1+4 & 3+3 \\ -3+3 & -2-6 & 4+1\end{array}\right]=\left[\begin{array}{ccc}7 & 3 & 6 \\ 0 & -8 & 5\end{array}\right]$
Similarly $A-B=\left[\begin{array}{ccc}2 & -1 & 3 \\ -3 & -2 & 4\end{array}\right]-\left[\begin{array}{ccc}5 & 4 & 3 \\ 3 & -6 & 1\end{array}\right]=\left[\begin{array}{ccc}2-5 & -1-4 & 3-3 \\ -3-3 & -2+6 & 4-1\end{array}\right]=$ $\left[\begin{array}{ccc}-3 & -5 & 0 \\ -6 & 4 & 3\end{array}\right]$

Note:

1) $A+B=B+A$
2) $A-B \neq B-A$
3) $k(A+B)=k A+k B$
4) $(\alpha+\beta) A=\alpha A+\beta A$
5) $\alpha \beta A=\alpha(\beta A)=\beta(\alpha A)$
6) $A+(B+C)=(A+B)+C$
7)Existence of Additive Identity: $A+O=O+A=A$ (Here O be a Null matrix)
7) Existence of Additive Inverse: $A+(-A)=O=(-A)+A$
9)Cancellation law: $\mathrm{A}+\mathrm{B}=\mathrm{A}+\mathrm{C} \Rightarrow B=C$ (left cancellation law)

$$
B+A=C+A \Rightarrow B=C(\text { right cancellation law })
$$

Matrix Multiplication:

Existence of the product of two matrices: The product of two matrices A and B are said to be exist (i.e $A B$ exist) if the number of columns in the matrix A is equal to the number of rows in the matrix B.

Product of matrices:

If $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{j k}\right]_{n \times p}$ then $A B$ is a matrix of order $m \times p$, Which is defined as $A B=\left[c_{i k}\right]_{m \times p}$, where $c_{i k}=a_{i 1} b_{1 k}+a_{i 2} b_{2 k}+-----+a_{i n} b_{n k}=\sum_{j=1}^{n} a_{i j} b_{j k}$

Thus (i, k) th element of $A B=$ Sum of the product of the corresponding elementsof ith row of A and kth column of B

Properties of product of two matrices:

1.Matrix multiplication is not commutative in general i.e $A B \neq B A$
2. Matrix multiplication is associative i.e $A(B C)=(A B) C$
3.Matrix multiplication is distributive over addition i.e $A(B+C)=A B+A C$
4.A. $A=A^{2}$
5.A. $I=I A=A$
6.I.I.I - - - - - -I (ntimes $)=I$

Transpose of a matrix:
If A be a matrix of order $m \times n$ then the transpose of the matrix will be obtained by interchanging the rows and columns. It is denoted by A^{T} and the order of A^{T} is $n \times m$.

Ex: let $A=\left[\begin{array}{ccc}2 & -3 & 4 \\ 3 & 2 & 5\end{array}\right] A^{T}=\left[\begin{array}{cc}2 & 3 \\ -3 & 2 \\ 4 & 5\end{array}\right]$

Properties:

1) $\left(A^{T}\right)^{T}=\mathrm{A}$
2) $(A+B)^{T}=A^{T}+B^{T}$
3)If A be a matrix and k is a scalar $(k A)^{T}=k A^{T}$
3) $(A B)^{T}=B^{T} A^{T}$
4) $(A B C)^{T}=C^{T} B^{T} A^{T}$

Symmetric Matrix:A square matrix A is said to be symmetric matrix if $A^{T}=A$, i.e $a_{i j}=$ $a_{j i}$ for all i and j
$\mathrm{Ex}: A=\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right] \cdot A=\left[\begin{array}{cc}a & -1 \\ -1 & a\end{array}\right]$
Skew-symmetric matrix:A square matrix A is said to be skew-symmetric matrix if $A^{T}=$ $-A$, i.e $a_{i j}=-a_{j i}$ for all i and j

Ex: $A=\left[\begin{array}{ccc}0 & h & -g \\ -h & 0 & f \\ g & -f & 0\end{array}\right]$.
Properties:

1) $A+A^{T}$ is a symmetric matrix but $A-A^{T}$ is a skew - symmetric matrix.
2) $A A^{T}$ and $A^{T} A$ are symmetric matrix
3)Every square matrix A can be expressed as the sum of symmetric and skew-symmetric matrix.
i.e $A=\frac{1}{2}\left(A+A^{T}\right)+\frac{1}{2}\left(A-A^{T}\right)$ Here $\frac{1}{2}\left(A+A^{T}\right)$ is a symmetric matrix and

$$
\frac{1}{2}\left(A-A^{T}\right) \text { is a skew }- \text { symmetric matrix }
$$

Note: If A and B are symmetric matrix and $A B=B A$ then $A B$ is a symmetric matrix.
Note:If A is a symmetric matrix then A^{n} is a symmetric matrix for all + ve integer.
Note:A matrix which is both symmetric as well as skew symmetric matrix is a null matrix.

Adjoint of a matrix:

Adjoint of a square matrix A is defined as the transpose of the cofactor matrix A.
It is denoted adj.A.
i.e adj. $A=(\text { cofactor matrix of } A)^{T}=\left[C_{i j}\right]^{T}$, Where $C_{i j}$ is cofactor of $a_{i j}$ in A

Note: If A be a square matrix of order n then $\mathrm{A}(\operatorname{adjA})=|A| I_{n}, I$ be an Identity matrix
Note: If A be a non-singular matrix of order n then $|\operatorname{adj} A|=|A|^{n-1}$
Note: If A and B are non-singular square matrix of same order then $\operatorname{adj} A B=\operatorname{adjBadj} A$
Note: If A is a non-singular matrix then $\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A$

Inverse of a matrix:

A non- singular square matrix A of order n is said to be invertible (i.e A^{-1} exists) if there exist a non singular square matrix B of order n , such that $A B=B A=I$, so $A^{-1}=B$ or $B^{-1}=A$. Formula finding A^{-1} :

If A be non singular square matrix then A^{-1} is defined as $A^{-1}=\frac{a d j . A}{|A|}$
Note: If A is invertible matrix then $\left(A^{-1}\right)^{-1}=A$
Note: $(A B)^{-1}=B^{-1} A^{-1}$
Note: If A is invertible square matrix then A^{T} is invertible i.e $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
Note: If A is an invertible square matrix then $\operatorname{adj} A^{T}=(\operatorname{adj} A)^{T}$
Note: Adjoint of a symmetric matrix is also a symmetric matrix.

$$
(\operatorname{adj} A)^{T}=\operatorname{adj} A
$$

Note: If A is a non-singular matrix then $\left|A^{-1}\right|=|A|^{-1}$

Solution for system of linear equations:(Solve by matrix method)

Let us consider three linear equations

$$
a_{1} x+b_{1} y+c_{1} z=d_{1}, a_{2} x+b_{2} y+c_{2} z=d_{2} \text { and } a_{3} x+b_{3} y+c_{3} z=d_{3}
$$

Let $A=\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right] \quad X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \quad B=\left[\begin{array}{l}d_{1} \\ d_{2} \\ d_{3}\end{array}\right]$
Now the above equation can be written as $A X=B \Rightarrow X=A^{-1} B$
Which is known as matrix method.

