A rectangular array of mn numbers with m horizontal lines (rows) and n vertical lines (columns) is known as a matrix of order $m \times n$.

Ex: A =
$$\begin{bmatrix} 2 & 3 \\ a & b \\ -1 & 3 \end{bmatrix}$$
 it is a matrix of order 3 × 2 and contains 6 elements. i.e 3 × 2 = 6

General element of a matrix: If an element occurs in the ith row and jth column of a matrix then it is called (i,j)th element of the matrix. It is denoted by a_{ij} .

A matrix of order m imes n , generally written as $A = \left[a_{ij}
ight]_{m imes n}$

Let us consider a matrix of order 2×3 by general element.

$$\mathsf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

Ex: construct a matrix of order 3×4 , whose elements are in the form of $a_{ij} = 2i - j$.

Types of a matrices:

Row matrix: A matrix having only one row is known as row matrix or Row vector.

A=[2 3 -1]

Column matrix: A matrix having only one column is known as column matrix.

$$A = \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}$$

Zero matrix or Null matrix: If all the elements of a matrix are zero then it is called null matrix.

$$\mathsf{Ex}: \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Square matrix: If the number of rows and columns of a matrix are equal then it is called square matrix.i.e m=n

Ex: A = $\begin{bmatrix} 2 & -1 \\ 9 & 3 \end{bmatrix}$

Rectangular matrix: If the number of rows and columns of a matrix are not equal then it is called rectangular matrix. i.e $m \neq n$.

 $\mathsf{Ex:A=} \begin{bmatrix} -1 & 2 & 4 \\ 2 & 3 & -9 \end{bmatrix}$

Diagonal elements: The elements a_{ij} , i = j in a square elements A are called diagonal elements.

Ex: $A = \begin{bmatrix} 2 & 3 & 0 \\ -2 & -3 & 1 \\ 4 & -6 & 4 \end{bmatrix}$ here 2, -3 and 4 are diagonal elements.

Diagonal matrix: A square matrix A is said to be a diagonal matrix if all the diagonal elements are present but non diagonal elements are zero, i.e $a_{ij} = 0$, for all $i \neq j$.

$$\mathsf{Ex:} \mathsf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

Scalar matrix: A square matrix A is said to be a scalar matrix if all the diagonal elements are equal but non diagonal elements are zero.

$$\mathsf{Ex:} \mathsf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Unit matrix or Identity matrix: A square matrix is said to be an identity matrix if all the diagonal elements are unity(1) but non diagonal elements are zero. It is denoted by I_n or I.

i.e
$$a_{ij} = 0$$
, for all $i \neq j$ and $a_{ij} = 1$, for all $i = j$.

Ex:
$$I_3 \text{ or } I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Ex: $I_2 \text{ or } I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Upper triangular matrix: A square matrix is said to be an upper triangular matrix if all the elements below the main diagonal are zero. i.e. $a_{ij} = 0$, for all i > j.

$$\mathsf{Ex:} \mathsf{A} = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 7 \\ 0 & 0 & -2 \end{bmatrix}$$

Lower triangular matrix: A square matrix is said to be a lower triangular matrix if all the elements above the main diagonal are zero. *i. e* $a_{ij} = 0$, for all i < j

Ex: A =	2 3	0 1	$\begin{bmatrix} 0\\0 \end{bmatrix}$
	L-1	4	-2]
2			

Singular matrix: A square matrix A is said to be a singular matrix if det.A=0 or |A| = 0.

Ex:

let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$$

 $|A| = \begin{vmatrix} 1 & 2 \\ 3 & 6 \end{vmatrix} = 0$ hence A is a singular matrix.

Non singular matrix: A square matrix A is said to be a nonsingular matrix if or det $A \neq A$ 0 or $|A| \neq 0$.

Ex:

$$|\text{et A} = \begin{bmatrix} 1 & 2 \\ 5 & 6 \end{bmatrix}$$
$$|A| = \begin{vmatrix} 1 & 2 \\ 5 & 6 \end{vmatrix} = 6 - 10 = -4 \text{ hence A is a nonsingular matrix.}$$

Comparable Matrix: Two matrices A and B are said to be comparable if they have same order.

Ex:
$$A = \begin{bmatrix} 2 & -3 & 1 \\ 1 & 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$ here A and B are comparable.

г1

Equal Matrix: Two matrices A and B are said to be equal (i.e A=B) if they have same order and their corresponding elements are equal.

Let
$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ d_1 & e_1 & f_1 \end{bmatrix}$$
 and $B = \begin{bmatrix} a_2 & b_2 & c_2 \\ d_2 & e_2 & f_2 \end{bmatrix}$ So $A = B$ iff $a_1 = a_2, b_1 = b_2, c_1 = c_2, d_1 = d_2, e_1 = e_2, f_1 = f_2$

Ex: Find the value of x and y if $\begin{bmatrix} 2x - y & -1 \\ 2 & x + y \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 2 & 6 \end{bmatrix}$

Ans: Here 2x-y=3 and x+y=6 solve the above two equations x=3 and y=3.

Scalar multiplication of a matrix: If A be a matrix and k be a scalar then the scalar multiplication of a matrix kA will be obtained multiplying each element of A by k.*i*. $e A = [a_{ij}] \Rightarrow kA = [ka_{ij}]$

Ex: let
$$A = \begin{bmatrix} 1 & 2 \\ 5 & 6 \end{bmatrix} \Rightarrow 2A = \begin{bmatrix} 2 & 4 \\ 10 & 12 \end{bmatrix}$$

Matrix addition:

If A and B are two matrices of order $m \times n$ then addition A+B will be obtained by adding the corresponding elements of A and B. The order of A+B is $m \times n$.

Ex: Find A+B if
$$A = \begin{bmatrix} 2 & -1 & 3 \\ -3 & -2 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 5 & 4 & 3 \\ 3 & -6 & 1 \end{bmatrix}$

Ans: $A + B = \begin{bmatrix} 2 & -1 & 3 \\ -3 & -2 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 4 & 3 \\ 3 & -6 & 1 \end{bmatrix} = \begin{bmatrix} 2 + 5 & -1 + 4 & 3 + 3 \\ -3 + 3 & -2 - 6 & 4 + 1 \end{bmatrix} = \begin{bmatrix} 7 & 3 & 6 \\ 0 & -8 & 5 \end{bmatrix}$ Similarly $A - B = \begin{bmatrix} 2 & -1 & 3 \\ -3 & -2 & 4 \end{bmatrix} - \begin{bmatrix} 5 & 4 & 3 \\ 3 & -6 & 1 \end{bmatrix} = \begin{bmatrix} 2 - 5 & -1 - 4 & 3 - 3 \\ -3 - 3 & -2 + 6 & 4 - 1 \end{bmatrix} = \begin{bmatrix} -3 & -5 & 0 \\ -6 & 4 & 3 \end{bmatrix}$ Note: 1) A + B = B + A2) $A - B \neq B - A$ 3) k(A + B) = kA + kB4) $(\alpha + \beta)A = \alpha A + \beta A$ 5) $\alpha\beta A = \alpha(\beta A) = \beta(\alpha A)$ 6) A + (B + C) = (A + B) + C2) Evictence of Addition Identities A Q = Q A = A/(A + C) = Q has a Null matrix.

7)Existence of Additive Identity: A+O=O+A=A(Here O be a Null matrix)

8) Existence of Additive Inverse: A+(-A)=O=(-A)+A

9)**Cancellation law**: $A+B=A+C \Rightarrow B = C(left cancellation law)$

 $B + A = C + A \Rightarrow B = C(right cancellation law)$

Matrix Multiplication:

Existence of the product of two matrices: The product of two matrices A and B are said to be exist (*i. e AB exist*) if the number of columns in the matrix A is equal to the number of rows in the matrix B.

Product of matrices:

If $A = [a_{ij}]_{m \times n}$ and $B = [b_{jk}]_{n \times p}$ then AB is a matrix of order $m \times p$, Which is defined as $AB = [c_{ik}]_{m \times p}$, where $c_{ik} = a_{i1}b_{1k} + a_{i2}b_{2k} + - - - - + a_{in}b_{nk} = \sum_{j=1}^{n} a_{ij}b_{jk}$ Thus (i, k)th element of AB = Sum of the product of the corresponding elements of

ith row of A and kth column of B

Properties of product of two matrices:

1. Matrix multiplication is not commutative in general *i*. $e AB \neq BA$

2. Matrix multiplication is associative i. e A(BC) = (AB)C

3. Matrix multiplication is distributive over addition *i.* e A(B + C) = AB + AC

- $4.A.A = A^2$
- 5.A.I = IA = A

6.I.I.I - - - - - I(ntimes) = I

Transpose of a matrix:

If A be a matrix of order $m \times n$ then the transpose of the matrix will be obtained by interchanging the rows and columns. It is denoted by A^T and the order of A^T is $n \times m$.

гĴ	2	4 1	[2]	3]
Ex: let $A = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$	-3 2	$\begin{bmatrix} 4 \\ r \end{bmatrix} A^T =$	-3	2
13	Z	L L	L 4	5]

Properties:

$$(A^{T})^{T} = A$$

$$2)(A+B)^T = A^T + B^T$$

3) If A be a matrix and k is a scalar $(kA)^T = k A^T$

$$4)(AB)^T = B^T A^T$$

$$5) (ABC)^T = C^T B^T A^T$$

Symmetric Matrix: A square matrix A is said to be symmetric matrix if $A^T = A$, *i*. $e a_{ij} = a_{ji}$ for all *i* and *j*

Ex:
$$A = \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix} . A = \begin{bmatrix} a & -1 \\ -1 & a \end{bmatrix}$$

Skew-symmetric matrix: A square matrix A is said to be skew-symmetric matrix if $A^T = -A$, *i.* $e a_{ij} = -a_{ji}$ for all *i* and *j*

Ex:
$$A = \begin{bmatrix} 0 & h & -g \\ -h & 0 & f \\ g & -f & 0 \end{bmatrix}$$
.

Properties:

1) $A + A^{T}$ is a symmetric matrix but $A - A^{T}$ is a skew – symmetric matrix.

2) AA^{T} and $A^{T}A$ are symmetric matrix

3) Every square matrix A can be expressed as the sum of symmetric and skew-symmetric matrix.

i.
$$e A = \frac{1}{2}(A + A^T) + \frac{1}{2}(A - A^T)$$
 Here $\frac{1}{2}(A + A^T)$ is a symmetric matrix and
 $\frac{1}{2}(A - A^T)$ is a skew – symmetric matrix

Note: If A and B are symmetric matrix and AB=BA then AB is a symmetric matrix.

Note: If A is a symmetric matrix then A^n is a symmetric matrix for all + ve integer.

Note: A matrix which is both symmetric as well as skew symmetric matrix is a null matrix.

Adjoint of a matrix:

Adjoint of a square matrix A is defined as the transpose of the cofactor matrix A.

It is denoted adj.A.

i.e $adj.A = (cofactor matrix of A)^T = [C_{ij}]^T$, Where C_{ij} is cofactor of a_{ij} in A Note: If A be a square matrix of order n then A(adjA)= $|A|I_n$, I be an Identity matrix Note: If A be a non-singular matrix of order n then $|adjA| = |A|^{n-1}$ Note: If A and B are non-singular square matrix of same order then adjAB=adjBadjA Note: If A is a non-singular matrix then adj(adjA)= $|A|^{n-2}A$

Inverse of a matrix:

A non- singular square matrix A of order n is said to be invertible (i.e A^{-1} exists) if there exist a non singular square matrix B of order n, such that AB = BA = I, so $A^{-1} = B$ or $B^{-1} = A$.

Formula finding A^{-1} :

If A be non singular square matrix then A^{-1} is defined as $A^{-1} = \frac{adj.A}{|A|}$

Note: If A is invertible matrix then $(A^{-1})^{-1} = A$

Note: $(AB)^{-1} = B^{-1}A^{-1}$

Note: If A is invertible square matrix then A^T is invertible i.e $(A^T)^{-1} = (A^{-1})^T$

Note: If A is an invertible square matrix then $adjA^T = (adjA)^T$

Note: Adjoint of a symmetric matrix is also a symmetric matrix.

$$(adjA)^T = adjA$$

Note: If A is a non-singular matrix then $|A^{-1}| = |A|^{-1}$

Solution for system of linear equations: (Solve by matrix method)

Let us consider three linear equations

$$a_1x + b_1y + c_1z = d_1, a_2x + b_2y + c_2z = d_2$$
 and $a_3x + b_3y + c_3z = d_3$

Let
$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad B = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

Now the above equation can be written as $AX = B \Rightarrow X = A^{-1}B$

Which is known as matrix method.