#### FINITE DIFFERENCES AND INTERPOLATION

In Engineering, sometimes it is required to evaluate a function f(x) at some argument (independent variable) from a given set of tabulated values of f(x) within some interval. This can be done by studying a new concept called as Interpolation. Before studying interpolation, one should have an idea on the finite differences which is being used in interpolation.

The Finite Differences are:

- **Forward Differences**
- 2. **Backward Differences**
- 3. Central Differences
- 4. **Average Differences**

If y=f(x) is tabulated at equally spaced points  $x_0$ ,  $x_1=x_0+h$ ,  $x_2=x_0+2h$ , ...,  $x_n=x_0+nh$  as  $y_0=f(x_0)$ ,  $y_1=f(x_1)$ ,  $y_2=f(x_2)$ ,  $\dots y_n = f(x_n)$  respectively, then the different type of differences are defined by :

#### A) **FORWARD DIFFERENCES:**

## 1st forward differences:

$$\Delta y_0 = y_1 - y_0, \Delta y_1 = y_2 - y_1, \dots$$
 etc

$$\Delta y_i = y_{i+1} - y_i$$
,  $i = 0,1,2,...n-1$  are called as 1<sup>st</sup> forward differences.

### 2<sup>nd</sup> forward differences:

$$\Delta^2 y_0 = \Delta y_1 - \Delta y_0, \Delta^2 y_1 = \Delta y_2 - \Delta y_1, \dots etc.$$

$$\Delta^2 y_i = \Delta y_{i+1} - \Delta y_i, i = 0,1,2,...,n-1$$

are called as 2<sup>nd</sup> forward differences.

## 3<sup>rd</sup> forward differences:

$$\Delta^3 y_0 = \Delta^2 y_1 - \Delta^2 y_0$$
,  $\Delta^3 y_1 = \Delta^2 y_2 - \Delta^2 y_1$ , .... etc

are called as 3<sup>rd</sup> forward differences.

Similarly, the other higher order differences can be found.

#### TABLE OF FORWARD DIFFERENCES (For n=5)

$$x$$
  $y$   $\Delta$   $\Delta^2$   $\Delta^3$   $\Delta^4$   $\Delta^5$ 

$$x_0$$
  $y_0$ 

$$x_1$$
  $y_1$   $\Delta y_0$ 

$$x_2$$
  $y_2$   $\Delta y_1$   $\Delta^2 y_0$ 

$$x_3$$
  $y_3$   $\Delta y_2$   $\Delta^2 y_1$   $\Delta^3 y_0$ 

$$x_4$$
  $y_4$   $\Delta y_3$   $\Delta^2 y_2$   $\Delta^3 y_1$   $\Delta^4 y_0$ 

$$x_5$$
  $y_5$   $\Delta y_4$   $\Delta^2 y_3$   $\Delta^3 y_2$   $\Delta^4 y_1$   $\Delta^5 y_0$ 

## Example-1

Construct the forward difference table for  $y = 3x^4 - x + 5$ , given x = -1, 1, 2, 3, 4 and hence find the value of  $\Delta f(2)$ ,  $\Delta^2 f(1)$ . Then Find the leading term and leading differences in the table.

$$1 \quad 7 \quad -2$$

From the table, 
$$\Delta f(2) = \Delta y_2 = 194$$
,  $\Delta^2 f(1) = \Delta^2 y_1 = 150$ 

## B) <u>BACKWARD DIFFERENCES</u>

#### 1st backward differences:

$$\nabla y_1 = y_1 - y_0$$
,  $\nabla y_2 = y_2 - y_1$ ,.....etc.

 $\nabla y_{i+1} = y_{i+1} - y_i$ , i = 0,1,2,...n-1 are called as 1st backward differences.

## 2<sup>nd</sup> backward differences:

$$\nabla^2 y_2 = \nabla y_2 - \nabla y_1, \nabla^2 y_3 = \nabla y_3 - \nabla y_2, \dots etc.$$

$$\nabla^2 y_{i+1} = \nabla y_{i+1} - \nabla y_i, i = 1,2,....$$

are called as 2<sup>nd</sup> backward differences.

## 3<sup>rd</sup> backward differences:

$$\nabla^3 y_3 = \nabla^2 y_3 - \nabla^2 y_2$$
,  $\nabla^3 y_4 = \nabla^2 y_4 - \nabla^2 y_3$ , .... etc

are called as 3<sup>rd</sup> backward differences.

Similarly, the other higher order differences can be found.

## TABLE OF BACKWARD DIFFERENCES (FOR n=5)

$$x \quad y \quad \nabla \quad \nabla^2 \quad \nabla^3 \quad \nabla^4 \quad \nabla^5$$

$$x_0$$
  $y_0$ 

$$x_1$$
  $y_1$   $\nabla y_1$ 

$$x_2$$
  $y_2$   $\nabla y_2$   $\nabla^2 y_2$ 

$$x_3$$
  $y_3$   $\nabla y_3$   $\nabla^2 y_3$   $\nabla^3 y_3$ 

$$x_4$$
  $y_4$   $\nabla y_4$   $\nabla^2 y_4$   $\nabla^3 y_4$   $\nabla^4 y_4$ 

$$x_5$$
  $y_5$   $\nabla y_5$   $\nabla^2 y_5$   $\nabla^3 y_5$   $\nabla^4 y_5$   $\nabla^5 y_5$ 

#### C) <u>SHIFT OPERATOR</u>

This operator is denoted by E and the inverse shift operator is denoted by  $E^{-1}$ . If f(x) be any function and h = interval of differencing. Then,

$$Ef(x) = f(x+h),$$

$$E^{2} f(x) = E(E(f(x))) = E(f(x+h)) = f(x+2h),$$

$$E^{n} f(x) = f(x+nh), \qquad n = 1,2,3.....$$

$$E^{-1} f(x) = f(x-h),$$

$$E^{-2} f(x) = f(x-2h)$$

$$E^{-n} f(x) = f(x-nh), \qquad n = 1,2,3,.....$$

#### Example-2

Evaluate:  $E \tan x - E^{-2}e^x$ , taking h=1

#### **Answer:**

$$E \tan x - E^{-2}e^{x}$$

$$= \tan(x+h) - e^{x-2h}$$

$$= \tan(x+1) - e^{x-2}$$

## **FORMULA:**

1. Taylor's series expansion:

$$f(x+h) = f(x) + h \frac{f'(x)}{1!} + h^2 \frac{f''(x)}{2!} + h^3 \frac{f'''(x)}{3!} + \dots$$

2. Exponential Series:

$$e^{x} = 1 + \frac{x}{1!} + \frac{x}{2!} + \frac{x^{3}}{3!} + \dots$$

## **RELATION BETWEEN THE OPERATORS**

1. 
$$\Delta = E - 1$$

2. 
$$\nabla = 1 - E^{-1}$$

$$E = e^{hD}, D = \frac{d}{dx}$$

4. 
$$E^{-1} = e^{-hD}, D = \frac{d}{dx}$$

#### Proof:

1. For any function f(x)

$$\Delta f(x) = f(x+h) - f(x)$$

$$= Ef(x) - 1.f(x)$$

$$=(E-1)f(x)$$

$$\Rightarrow \Delta = E - 1$$

2. Similar to 1.

3.

$$Ef(x) = f(x+h) = f(x) + h \frac{f'(x)}{1!} + h^2 \frac{f''(x)}{2!} + h^3 \frac{f'''(x)}{3!} + \dots$$

$$= f(x) + \frac{hDf(x)}{1!} + \frac{h^2D^2f(x)}{2!} + \frac{h^3D^3f(x)}{3!} + \dots$$

$$= \left(1 + \frac{hD}{1!} + \frac{h^2D^2}{2!} + \frac{h^3D^3}{3!} + \dots\right) f(x)$$

$$= e^{hD}f(x)$$

$$\Rightarrow E = e^{hD}$$

4. Proceed as in 3.

#### **Assignments:**

1. Evaluate the following:

a) 
$$\frac{\Delta}{E}\sin x$$
, b)  $\frac{\Delta^2}{E}e^x$ ,  $h=1$  c)  $(\Delta+\nabla)^2x^2$ ,

2. Prove that:

a) 
$$(1+\Delta)(1-\nabla)=1$$
, b)  $\Delta\nabla=\nabla\Delta=\Delta+\nabla$ 

## Note:

- 1. If a polynomial is of degree n, then  $n^{th}$  order difference is constant and other higher order differences will be 0.
- 2. If we are given (n+1) values of y in a data, then we can find a polynomial of degree n.

## Example-6

## Find the missing values in the data:

1.

| X      | 1 | 1.2   | 1.4 | 1.6  | 1.8   | 2 | 2.2   | 2.4   |
|--------|---|-------|-----|------|-------|---|-------|-------|
| Y=f(x) | 0 | 0.182 | -   | 0.47 | 0.587 | 1 | 0.788 | 0.875 |

#### **Solution:**

| X   | y     | Δ       | $\Delta^2$ | $\Delta^3$ | $\Delta^{4}$ | $\Delta^5$   | $\Delta^6$    |
|-----|-------|---------|------------|------------|--------------|--------------|---------------|
| 1   | 0     |         |            |            |              |              |               |
| 1.2 | 0.182 | 0.182   |            |            |              |              |               |
| 1.4 | A     | A-0.182 | A-0.364    |            |              |              |               |
| 1.6 | 0.47  | 0.47-A  | 0.652-2A   | 1.016-3A   |              |              |               |
| 1.8 | 0.587 | 0.117   | A-0.353    | 3A-1.005   | 6A-2.021     |              |               |
| 2.0 | В     | B-0.587 | B-0.704    | B-A-0.351  | B-3A+0.654   | B-9A+2.675   |               |
| 2.2 | 0.788 | 0.788-В | 1.375-2B   | 2.079-3B   | 2.43-4B+A    | -5B+4A+1.776 | -6B+13A-0.899 |
| 2.4 | 0.875 | 0.087   | B-0.701    | 3B-2.076   | 6B-4.155     | 10B-A-6.585  | 15B-5A-8.361  |

Since, in the data we are given only six values of y, so therefore we can find a polynomial of degree 5. Hence the  $6^{th}$  differences will be 0.

So,

Solving above equations we get A=21.217/55 and B=113.188/165 The missing values are A=0.386 and B=0.686 approximately.

## **Assignment:**

## Find the missing data in the tables:

| 1 |   |  |
|---|---|--|
| 1 | • |  |

| X | 1  | 2  | 3 | 4  | 5  |
|---|----|----|---|----|----|
| у | 10 | 17 | - | 31 | 45 |

| _  |  |
|----|--|
| ٠, |  |
| 4. |  |

| _ | ۷. |   |     |    |     |    |     |   |     |
|---|----|---|-----|----|-----|----|-----|---|-----|
|   | X  | 1 | 1.5 | 2  | 2.5 | 3  | 3.5 | 4 | 4.5 |
|   | y  | 9 | -   | 13 | 21  | 37 | 53  | - | 82  |

| <u> </u> |   |   |    |    |    |
|----------|---|---|----|----|----|
| X        | 1 | 3 | 5  | 7  | 9  |
| У        | 9 | - | 17 | 22 | 25 |

# **INTERPOLATION**

If y=f(x) is tabulated at equally spaced points  $x_0$ ,  $x_1=x_0+h$ ,  $x_2=x_0+2h$ , .... $x_n=x_0+nh$  as  $y_0=f(x_0)$ ,  $y_1=f(x_1)$ ,  $y_2=f(x_2)$ , ..... $y_n=f(x_n)$  respectively, then the process of getting the values of y at some intermediate value between  $x_0$ , and  $x_n$  is called as Interpolation and that of getting the values of y at some x which is outside of  $x_0$  and  $x_n$  is called as Extrapolation.

Various Interpolation formula are:

- 1. Newton's Forward Interpolation
- 2. Newton's Backward Interpolation
- 3. Lagrange's Interpolation

## 1. Newton's Forward Interpolation Formula:

If y=f(x) is tabulated at (n+1) equally spaced points  $x_0$ ,  $x_1=x_0+h$ ,  $x_2=x_0+2h$ , .... $x_n=x_0+nh$  as  $y_0=f(x_0)$ ,  $y_1=f(x_1)$ ,  $y_2=f(x_2)$ , .... $y_n=f(x_n)$  respectively, then the Newton's Forward Interpolation Formula is given by:

$$y_p = y_0 + p\Delta y_0 + p(p-1)\frac{\Delta^2 y_0}{2!} + p(p-1)(p-2)\frac{\Delta^3 y_0}{3!} + \dots + p(p-1)(p-2)\dots(p-n+1)\frac{\Delta^n y_0}{n!}$$

which is a polynomial of degree n. Here,  $p = \frac{x - x_0}{h}$ .

## 2. Newton's Backward Interpolation Formula:

If y = f(x) is tabulated at (n+1) equally spaced points  $x_0$ ,  $x_1 = x_0 + h$ ,  $x_2 = x_0 + 2h$ , .... $x_n = x_0 + nh$  as  $y_0 = f(x_0)$ ,  $y_1 = f(x_1)$ ,  $y_2 = f(x_2)$ , .... $y_n = f(x_n)$  respectively, then the Newton's Backward Interpolation Formula is given by:

$$y_p = y_n + p\nabla y_n + p(p+1)\frac{\nabla^2 y_n}{2!} + p(p+1)(p+2)\frac{\nabla^3 y_n}{3!} + \dots + p(p+1)(p+2)\dots(p+n-1)\frac{\nabla^n y_n}{n!}$$

which is a polynomial of degree n. Here,  $p = \frac{x - x_n}{h}$ .

## 3. Lagrange's Interpolation Formula:

If y = f(x) is tabulated at (n+1) points  $x_0$ ,  $x_1 = x_0 + h$ ,  $x_2 = x_0 + 2h$ , .... $x_n = x_0 + nh$  (not necessarily equally spaced) as  $y_0 = f(x_0)$ ,  $y_1 = f(x_1)$ ,  $y_2 = f(x_2)$ , .... $y_n = f(x_n)$  respectively, then the Lagrange's Interpolation Formula is given by:

$$y = l_0(x) \times y_0 + l_1(x) \times y_1 + \dots + l_n(x) \times y_n$$
Where 
$$l_0(x) = \frac{(x - x_1)(x - x_2) \dots (x - x_n)}{(x_0 - x_1)(x_0 - x_2) \dots (x_0 - x_n)}, l_1(x) = \frac{(x - x_0)(x - x_2) \dots (x - x_n)}{(x_1 - x_0)(x_1 - x_2) \dots (x_1 - x_n)},$$

$$l_n(x) = \frac{(x - x_0)(x - x_1) \dots (x - x_{n-1})}{(x_n - x_0)(x_n - x_1) \dots (x_n - x_{n-1})},$$

### **Notes:**

- 1. Newton's forward Interpolation method is used to find the value of y at a point x which is given near the beginning of the data.(the arguments should be equally spaced)
- 2. Newton's backward Interpolation method is used to find the value of y at a point x which is given near the end of the data.(the arguments should be equally spaced)
- 3. Lagrange's Interpolation method is used to find the value of y at any point x.

#### **Examples:-**

#### 1. Construct a 3<sup>rd</sup> degree Newton's Forward Interpolating polynomial using the data:

| X | 1  | 2  | 3  | 4  |
|---|----|----|----|----|
| y | 10 | 17 | 23 | 32 |

#### **Answer:**-

| X | Y  | $\Delta y_0$ | $\Delta^2 y_0$ | $\Delta^3 y_0$ |
|---|----|--------------|----------------|----------------|
| 1 | 10 |              |                |                |
| 2 | 17 | 7            |                |                |
| 3 | 23 | 6            | -1             |                |
| 4 | 32 | 9            | 3              | 4              |

From the above table 
$$h = 1$$
,  $x_0 = 1$ ,  $y_0 = 10$ ,  $\Delta y_0 = 7$ ,  $\Delta^2 y_0 = -1$ ,  $\Delta^3 y_0 = 4$ ,  $p = \frac{(x - x_0)}{h} = \frac{x - 1}{1} = x - 1$ 

Newton's Forward Interpolation Formula is given by:

$$y_{p} = y_{0} + p\Delta y_{0} + p(p-1)\frac{\Delta^{2} y_{0}}{2!} + p(p-1)(p-2)\frac{\Delta^{3} y_{0}}{3!} -----(1)$$

which is a polynomial of degree 3.

Putting all the values in equation (1) we have,

$$y_{p}(x) = 10 + (x-1) \times 7 + (x-1)(x-1-1) \frac{-1}{2!} + (x-1)(x-1-1)(x-1-2) \frac{4}{3!}$$
$$= 10 + 7(x-1) - \frac{(x-1)(x-2)}{2} + 4(x-1)(x-2)(x-3)$$

## 2. Compute y at x = 3 using the data given below:

| X | 2  | 4  | 6  | 8  | 10 |
|---|----|----|----|----|----|
| у | 15 | 23 | 34 | 47 | 59 |

#### Answer :-

| X  | Y  | $\Delta y_0$ | $\Delta^2 y_0$ | $\Delta^3 y_0$ | $\Delta^4 y_0$ |
|----|----|--------------|----------------|----------------|----------------|
| 2  | 15 |              |                |                |                |
| 4  | 23 | 8            |                |                |                |
| 6  | 34 | 11           | 3              |                |                |
| 8  | 47 | 13           | 2              | -1             |                |
| 10 | 59 | 12           | -1             | -3             | -2             |

We have to compute y at x = 2.5, therefore

From the above table we take,

$$h = 2$$
  $x_0 = 2$ ,  $y_0 = 15$ ,  $\Delta y_0 = 8$ ,  $\Delta^2 y_0 = 3$ ,  $\Delta^3 y_0 = -1$ ,  $\Delta^4 y_0 = -2$ ,  $p = \frac{(x - x_0)}{h} = \frac{2.5 - 2}{2} = 0.25$ 

Newton's Forward Interpolation Formula is given by:

$$y_{p} = y_{0} + p\Delta y_{0} + p(p-1)\frac{\Delta^{2}y_{0}}{2!} + p(p-1)(p-2)\frac{\Delta^{3}y_{0}}{3!} + p(p-1)(p-2)(p-3)\frac{\Delta^{4}y_{0}}{4!} -----(1)$$

Putting all the values in equation (1) we have,

$$y(2.5) = 15 + 0.25 \times 8 + 0.25(0.25 - 1)\frac{3}{2!} + 0.25 \times (0.25 - 1)(0.25 - 2)\frac{-1}{3!} + 0.25 \times (0.25 - 1) \times (0.25 - 2) \times (0.25 - 3)\frac{-2}{4!}$$
$$= 15 + 2 - \frac{9}{32} - 0.0546875 + 0.0752 = 17.0752 - 0.3359375 \approx 16.74$$

## 3. Construct Newton's Backward Interpolating polynomial using the data:

| X | -1 | 0  | 1  | 2  | 3  |
|---|----|----|----|----|----|
| y | 9  | 21 | 42 | 63 | 87 |

and hence find y for x = 2.5.

Solution:

| X  | Y  | $\nabla$ | $\nabla^2$ | $\nabla^3$ | $ abla^4$ |
|----|----|----------|------------|------------|-----------|
| -1 | 9  |          |            |            |           |
| 0  | 21 | 12       |            |            |           |
| 1  | 42 | 21       | 9          |            |           |
| 2  | 63 | 21       | 0          | -9         |           |
| 3  | 87 | 24       | 3          | 3          | 12        |

$$p = \frac{x - x_n}{h} = \frac{x - 3}{1} = x - 3$$

$$y_{p} = y_{4} + p\nabla y_{4} + p(p+1)\frac{\nabla^{2}y_{4}}{2!} + p(p+1)(p+2)\frac{\nabla^{3}y_{4}}{3!} + p(p+1)(p+2)(p+3)\frac{\nabla^{4}y_{4}}{4!}$$

$$= 87 + (x-3)24 + (x-3)(x-2)\frac{3}{2} + (x-3)(x-2)(x-1)\frac{3}{6} + (x-3)(x-2)(x-1)x\frac{12}{24}$$

To find y at x=2.5 take 
$$x_n = 2$$
,  $p = \frac{x - x_n}{h} = \frac{2.5 - 2}{1} = 0.5$ 

$$y_p = 87 + 0.5 \times 24 + 0.5 \times 1.5 \times \frac{3}{2} + 0.5 \times 1.5 \times 2.5 \times \frac{3}{6} + 0.5 \times 1.5 \times 2.5 \times 3.5 \times \frac{12}{24}$$

= ?

### 4. Construct Lagrange's Interpolating polynomial using the data:

| X | 1  | 2  | 3  |
|---|----|----|----|
| Y | 42 | 63 | 87 |
|   |    |    |    |

and hence find y for x = 2.5.

Ans. 
$$l_0(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{(x-2)(x-3)}{2}$$

$$l_1(x) = \frac{(x-1)(x-3)}{(2-1)(2-3)} = \frac{(x-1)(x-3)}{-1}$$

$$l_2(x) = \frac{(x-1)(x-2)}{(3-1)(3-2)} = \frac{(x-1)(x-2)}{2}$$

$$y(x) = l_0(x) \times y_0 + l_1(x) \times y_1 + l_2(x) \times y_2$$

$$= \frac{(x-2)(x-3)}{2} \times 42 + \frac{(x-1)(x-3)}{-1} \times 63 + \frac{(x-1)(x-2)}{2} \times 87$$

$$= simplify$$

$$y(2.5) = l_0(2.5) \times y_0 + l_1(2.5) \times y_1 + l_2(2.5) \times y_2$$

$$= \frac{(2.5-2)(2.5-3)}{2} \times 42 + \frac{(2.5-1)(2.5-3)}{-1} \times 63 + \frac{(2.5-1)(2.5-2)}{2} \times 87$$

$$= simplify$$

## **Numerical Integration**

We can evaluate the definite integrals of the type:  $\int_a^b f(x)dx$  provided we know the integration  $\int f(x)dx$ . But it

is always not possible to evaluate all the definite integrals. In that case, we can implement a new method as discussed below.

**Definition:** Suppose a function y=f(x) is continuous in the interval [a, b] and tabulated at equally spaced points  $a=x_0, x_1=x_0+h, x_2=x_0+2h, ....x_n=x_0+h=b$  as  $y_0=f(x_0), y_1=f(x_1), y_2=f(x_2), .....y_n=f(x_n)$ , then the process of evaluating the approximate value of the integral  $\int_a^b f(x)dx$  is called as Numerical Integration.

#### **Techniques of Numerical Integration:**

- 1. Newton-Cote's Rule
- 2. Trapezoidal Rule
- 3. Simpson's 1/3<sup>rd</sup> Rule

#### 1. Newton-Cote's Rule

If y=f(x) is continuous in the interval [a, b] and tabulated at equally spaced points  $a=x_0$ ,  $x_1=x_0+h$ ,  $x_2=x_0+2h$ , .... $x_n=x_0+nh=b$  as  $y_0=f(x_0)$ ,  $y_1=f(x_1)$ ,  $y_2=f(x_2)$ ,.... $y_n=f(x_n)$ , then we can construct the Newton's Forward Interpolating Polynomial as:

$$y_{p} = y_{0} + p\Delta y_{0} + p(p-1)\frac{\Delta^{2}y_{0}}{2!} + p(p-1)(p-2)\frac{\Delta^{3}y_{0}}{3!} + \dots + p(p-1)(p-2)\dots(p-n+1)\frac{\Delta^{n}y_{0}}{n!} - \dots$$
 (1)

which is a polynomial of degree n. Here  $p = \frac{x - x_0}{h}$ .

Now,  $\int_{a}^{b} f(x)dx$  can be evaluated by integrating the function approximated by the interpolating polynomial in Eq. (1) over [a, b].

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} (y_{0} + p\Delta y_{0} + p(p-1)\frac{\Delta^{2} y_{0}}{2!} + p(p-1)(p-2)\frac{\Delta^{3} y_{0}}{3!} + ..)dx$$

$$= \int_{0}^{n} (y_{0} + p\Delta y_{0} + p(p-1)\frac{\Delta^{2} y_{0}}{2!} + p(p-1)(p-2)\frac{\Delta^{3} y_{0}}{3!} + ..)ndp \text{ as } p = \frac{x - x_{0}}{h} \Rightarrow hp = x - x_{0}$$

$$\Rightarrow dx = hdp$$

$$= \left[ n(y_{0}p + \frac{p^{2}}{2}\Delta y_{0} + (\frac{p^{3}}{3} - \frac{p^{2}}{2})\frac{\Delta^{2} y_{0}}{2!} + ..... \right]_{0}^{n} = n^{2}(y_{0} + \frac{n}{2}\Delta y_{0} + (\frac{n^{2}}{3} - \frac{n}{2})\frac{\Delta^{2} y_{0}}{2!} + ......)$$

### 2. Trapezoidal Rule

#### Formula:

If y=f(x) is continuous in the interval [a, b] and tabulated at equally spaced points  $a=x_0$ ,  $x_1=x_0+h$ ,  $x_2=x_0+2h$ , .... $x_n=x_0+nh=b$  as  $y_0=f(x_0)$ ,  $y_1=f(x_1)$ ,  $y_2=f(x_2)$ ,.... $y_n=f(x_n)$ , then the approximate value of  $\int_a^b f(x)dx$  will be

$$\int_{a}^{b} f(x)dx = \frac{h}{2} [y_0 + 2(y_1 + y_2 + \dots) + y_n]$$

Here, h = (b-a)/n. This is called as trapezoidal formula.

## **Example:**

Evaluate  $\int_{0}^{1} \frac{1}{1+x^2} dx$  using Trapezoidal rule taking h=1/4. Hence find an approximate value of  $\pi$ .

Answer: Here a=0, b=1, h=1/4=0.25  $\frac{1}{4} = (1-0)/n$  $\Rightarrow n=1/(1/4)=4$ .

| X | $X_0 = 0$ | $X_1 = 0.25$ | $X_2 = 0.5$ | $X_3 = 0.75$ | $X_4=1$   |
|---|-----------|--------------|-------------|--------------|-----------|
| У | $1=y_0$   | $0.9411=y_1$ | $0.8=y_2$   | $0.64=y_3$   | $0.5=y_4$ |

$$\int_{a}^{b} f(x)dx = \frac{h}{2} [y_0 + 2(y_1 + y_2 + \dots) + y_n]$$

$$\Rightarrow \int_{0}^{1} \frac{1}{1+x^2} dx = \frac{0.25}{2} [1 + 2(0.9411 + 0.8 + 0.64) + 0.5]$$

$$= 0.782775$$

To find the value of  $\pi$ 

$$\int_{0}^{1} \frac{1}{1+x^{2}} dx = 0.782775$$

$$\Rightarrow \left[ \tan^{-1} x \right]_{0}^{1} = 0.782775$$

$$\Rightarrow \tan^{-1} 1 - \tan^{-1} 0 = 0.782775$$

$$\Rightarrow \frac{\pi}{4} = 0.782775$$

$$\Rightarrow \pi = 4 \times 0.782775 = 3.1311$$

## **Assignment:**

- i) Evaluate  $\int_{0}^{1} \frac{1}{1+x^2} dx$  using Trapezoidal rule taking h=1/5. Hence find an approximate value of  $\pi$ .
- ii) Evaluate  $\int_{0}^{1} \frac{1}{1+x^2} dx$  using Trapezoidal rule taking h=1/10. Hence find an approximate value of  $\pi$ .
- 3. Simpson's 1/3<sup>rd</sup> rule:

#### Formula:

If y=f(x) is continuous in the interval [a, b] and tabulated at equally spaced points  $a=x_0$ ,  $x_1=x_0+h$ ,  $x_2=x_0+2h$ , .... $x_n=x_0+nh=b$  as  $y_0=f(x_0)$ ,  $y_1=f(x_1)$ ,  $y_2=f(x_2)$ ,.... $y_n=f(x_n)$ , then the approximate value of  $\int_a^b f(x)dx$  will be

$$\int_{a}^{b} f(x)dx = \frac{h}{3} [y_0 + 4(y_1 + y_3 + y_5 + \dots) + 2(y_2 + y_4 + y_6 + \dots) + y_n]$$

Here, h = (b-a)/n and n is always **even**. This is called as **Simpson's 1/3^{rd} rule**.

### **Example:**

Evaluate  $\int_{0}^{1} \frac{1}{1+x^2} dx$  using Simpson's  $1/3^{rd}$  rule taking 11 ordinates. Hence find an approximate value of  $\pi$ .

#### **Answer:**

Here a=0, b=1, n=10. h=(b-a)/n=(1-0)/10=0.1

| <br>······································ |   |      |       |       |       |     |       |       |       |       |     |
|--------------------------------------------|---|------|-------|-------|-------|-----|-------|-------|-------|-------|-----|
| X                                          | 0 | 0.1  | 0.2   | 0.3   | 0.4   | 0.5 | 0.6   | 0.7   | 0.8   | 0.9   | 1   |
| У                                          | 1 | 0.99 | 0.961 | 0.917 | 0.862 | 0.8 | 0.735 | 0.671 | 0.609 | 0.552 | 0.5 |

$$\int_{a}^{b} f(x)dx = \frac{h}{3} [y_0 + 4(y_1 + y_3 + y_5 + \dots) + 2(y_2 + y_4 + y_6 + \dots) + y_n]$$

$$\int_{0}^{1} \frac{1}{1+x^2} dx = \frac{0.1}{3} [1 + 4(0.99 + 0.917 + 0.8 + 0.671 + 0.552) + 2(0.961 + 0.862 + 0.735 + 0.609) + 0.5]$$

$$\approx 0.78513$$

To find the value of  $\pi$ 

$$\int_{0}^{1} \frac{1}{1+x^{2}} dx = 0.78513$$

$$\Rightarrow \left[ \tan^{-1} x \right]_{0}^{1} = 0.78513$$

$$\Rightarrow \tan^{-1} 1 - \tan^{-1} 0 = 0.78513$$

$$\Rightarrow \frac{\pi}{4} = 0.78513$$

$$\Rightarrow \pi = 4 \times 0.78513 = 3.14052$$

#### **Example:**

Evaluate  $\int_{0}^{\pi/2} \sqrt{\cos x} dx$  using Simpson's 1/3<sup>rd</sup> rule taking h= $\pi$ /12(or 7 ordinates). ( Keep your calculator in "rad" mode)

### **Answer:**

Here a=0, b=  $\frac{\pi}{2}$ , n=6.

$$h = \frac{b-a}{n} = \frac{\frac{\pi}{2} - 0}{6} = \frac{\pi}{12}$$

| X | 0 | $\pi$   | $\frac{2\pi}{2\pi}$          | $3\pi - \pi$                 | $\frac{4\pi}{2} - \frac{\pi}{2}$ | $5\pi$  | $\frac{6\pi}{2}$             |
|---|---|---------|------------------------------|------------------------------|----------------------------------|---------|------------------------------|
|   |   | 12      | $\frac{1}{12} - \frac{1}{6}$ | $\frac{1}{12} - \frac{1}{4}$ | $\frac{1}{12} - \frac{1}{3}$     | 12      | $\frac{1}{12} - \frac{1}{2}$ |
| У | 1 | 0.98281 | 0.93061                      | 0.84089                      | 0.70711                          | 0.50874 | 0                            |

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \left[ y_0 + 4(y_1 + y_3 + y_5 + \dots) + 2(y_2 + y_4 + y_6 + \dots) + y_n \right]$$

$$\int_{0}^{1} \sqrt{\cos x} dx = \frac{\pi}{3} \left[ 1 + 4(0.98281 + 0.84089 + 0.50874) + 2(0.93061 + 0.70711) + 0 \right] = 1.18723$$
 (ans)

#### **Assignments**

- i. Evaluate  $\int_{0}^{1} x^{3} dx$  using a) Trapezoidal rule b) Simpson's  $1/3^{rd}$  rule taking a suitable h.
- ii. Evaluate  $\int_{0}^{5} \frac{dx}{4x+5}$  using a) Trapezoidal rule b) Simpson's  $1/3^{rd}$  rule considering 10 sub intervals.
- iii. Evaluate  $\int_{0}^{1} \cos x dx$  using a) Trapezoidal rule taking 5 equal parts.